Abiotic stress enhancement tools for improving crop tolerance

Authors

DOI:

https://doi.org/10.15835/nbha50312855

Keywords:

abiotic stress, CRISPR, miRNAs, transcription factor, transgenic plants

Abstract

Abiotic stresses create an unfavourable environment for plant growth, increasing the possibilities of low yield and associated economic loss. Several steps have been taken to address this problem. During the last twenty years, techniques of genetic engineering/transgenic breeding have made significant advances in gene manipulation for inciting desirable traits in transgenic plants. Transgenic techniques allow us to identify potential genes, transcription factors (TFs) and miRNAs, engaged in certain processes in plants, allowing us to gain a comprehensive understanding of the processes at molecular and physiological levels which determine plant resilience and production. The reliability and specificity of this approach ensure that future plant enhancements will be a huge success. As a result, transgenic breeding has determined to be a viable strategy in improving crop abiotic stress tolerance. The approach of CRISPR/Cas gene-editing technique to create stress-tolerant plant variants is gaining popularity right now. The researchers like this user-friendly technology because of its versatility. In the gene-editing process, the DNA sequence "CRISPR" and the endonuclease "Cas" collaborate under the supervision of specific guide RNA. In a variety of plant species, the CRISPR/Cas system is being utilized. In the majority of situations, Cas9 is employed. Various reports have surfaced which demonstrate the utilization of CRISPR/Cas9 technology to improve abiotic stress tolerance of plants. The focus of this review is on the promising and effective applications of transgenic plant breeding for enhancing environmental stress tolerance and crop productivity, as well as its recent developments.

Metrics

Metrics Loading ...

References

Abdoli S, Ghassemi-Golezani K, Alizadeh-Salteh S (2020). Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research 27(29):36939-36953.

https://doi.org/10.1007/s11356-020-09453-1

Adhikari L, Makaju SO, Missaoui AM (2019). QTL mapping of flowering time and biomass yield in tetraploid alfalfa (Medicago sativa L.). BMC Plant biology 19:359. https://doi.org/10.1186/s12870-019-1946-0

Ai B, Chen Y, Zhao M, Ding G, Xie J, Zhang F (2021). Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.). Genetic Resources and Crop Evolution 68(1):87-92. https://doi.org/10.1007/s10722-020-01045-9

Al-Ashkar I, Alderfasi A, Ben Romdhane W, Seleiman MF, El-Said RA, Al-Doss A (2020). Morphological and Genetic Diversity within Salt Tolerance Detection in Eighteen Wheat Genotypes. Plants 9(3):287. https://doi.org/10.3390/plants9030287

Al-Ashkar I, Alderfasi A, El-Hendawy S, Al-Suhaibani N, El-Kafafi S, Seleiman MF (2019). Detecting Salt Tolerance in Doubled Haploid Wheat Lines. Agronomy 9(4): 211. https://doi.org/10.3390/agronomy9040211

Alfatih A, Wu J, Jan SU, Zhang Z, Xia J, Xiang C (2020). Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant, Cell & Environment 43:2743-2754. https://doi.org/10.1111/pce.13856

Almutairi, ZM (2016). Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. International Journal of Agriculture and Biology 18(2):449-457. https://doi.org/10.17957/IJAB/15.0114

Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A (2019). Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry 139: 1–10. https://doi.org/10.1016/j.plaphy.2019.03.008

Alshareef NO, Wang JY, Ali S, Al-Babili S, Tester M, Schmöckel SM (2019). Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. Plant Physiology and Biochemistry 140:113-121. https://doi.org/10.1016/j.plaphy.2019.04.038

Ambawat S, Sharma P, Yadav NR, Yadav RC (2013). MYB transcription factor genes as regulators for plant responses: An overview. Physiology and Molecular Biology of Plants 19:307-321. https://doi.org/10.1007/s12298-013-0179-1

Ansari WA, Chandanshive SU, Bhatt V, Nadaf AB, Vats S, Katara JL, Sonah H, Deshmukh R (2020). Genome editing in cereals: approaches, applications and challenges. International Journal of Molecular Sciences 21(11):4040. https://doi.org/10.3390/ijms21114040

Arora NK (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability 2:95-96. https://doi.org/10.1007/s42398-019-00078-w

Ashkavand P, Tabari M, Zarafshar M, Tomásková I, Struve D (2015). Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Leśne Prace Badawcze 76(4).

Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019). Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 9:246. https://doi.org/10.3390/agronomy9050246

Baillo EH, Kimotho RN, Zhang Z, Xu P (2019). Transcription factors associated with abiotic and biotic stress toleranc and their potential for crops improvement. Genes 10: 771. https://doi.org/10.3390/genes10100771

Banavath JN, Chakradhar T, Pandit V, Konduru S, Guduru KK, Akila CS, Podha S, Puli CO (2018). Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Frontiers in Chemistry 2:6-34. https://doi.org/10.3389/fchem.2018.00034

Batool N, Ilyas N, Shahzad A, Hauser BA, Arshad M (2018). Quantitative trait loci (QTLs) mapping for salt stress tolerance in wheat at germination stage. Pakistan Journal of Agricultural Sciences 55(1):47-55. https://doi.org/10.21162/PAKJAS/18.5426

Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmend K, Abid M, Rizwan M, Shahid MR, Alotaibi M, et al. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Report 10:16975. https://doi.org/10.1038/s41598-020-73489-z

Bhat MA, Bhat MA, Kumar V, Wani IA, Bashir H, Shah AA, Rahman S, Jan AT (2020). The era of editing plant genomes using CRISPR/Cas: a critical appraisal. Journal of Biotechnology 324:34-60. https://doi.org/10.1016/j.jbiotec.2020.09.013

Cai R, Dai W, Zhang C, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B (2017). The maize WRKY transcription factor ZmWRKY17

negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta 246:1215-1231. https://doi.org/10.1007/s00425-017-2766-9

Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng JC, Nam KH, Li J, Chory J (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131:5341-5351. https://doi.org/10.1242/dev.01403

Casaretto JA, El-kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi Y-M, Rothstein SJ (2016). Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics 17:312. https://doi.org/10.1186/s12864-016-2659-5

Chen D, Chai S, McIntyre CL, Xue G-P (2018). Overexpression of a predominantly root-expressed NAC transcription factor in wheat roots enhances root length, biomass and drought tolerance. Plant Cell Reports 37:225-237. https://doi.org/10.1007/s00299-017-2224-y

Chen F, Hu Y, Vannozzi A, Wu K, Cai H, Qin Y, Mullis A, Lin Z, Zhang L (2017). The WRKY transcription factor family in model plants and crops. Critical Reviews in Plant Sciences 36:311-335. https://doi.org/10.1080/07352689.2018.1441103

Cheng Q, Dong L, Su T, Li T, Gan Z, Nan H, Lu S, Fang C, Kong L, Li H, Hou Z (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biology 19(1):1-11. https://doi.org/10.1186/s12870-019-2145-8

Choudhary SP, Yu JQ, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Sciences 17:594-605. https://doi.org/10.1016/j.tplants.2012.05.012

Chung PJ, Jung H, Choi YD, Kim JK (2018). Genome-wide analyses of direct target genes of four riceNAC-domain transcription factors involved in drought tolerance. BMC Genomics 19:40. https://doi.org/10.1186/s12864-017-4367-1

Collins NC, Tardieu F, Tuberosa R (2008). Quantitative trait loci and crop performance under abiotic stress: Where do we stand? Plant Physiology 147:469-486. https://doi.org/10.1104/pp.108.118117

Deeba F, Sultana T, Javaid B, Mahmood T, Naqvi S (2017). Molecular characterization of a MYB protein from Oryzasativa for its role in abiotic stress tolerance. Brazilian Archives of Biology and Technology 60:1-12. https://doi.org/10.1590/1678-4324-2017160352

Demirer GS, Zhang H, Goh NS, Gonz´alez-Grandío E, Landry MP (2019). Carbon nanotube–mediated DNA delivery without transgene integration in intact plants. Nature Protocols 14:2954-2971. https://doi.org/10.1038/s41596-019-0208-9

Denver JB, Ullah H (2019). miR393s regulate salt stress response pathway in Arabidopsis thaliana through scaffold protein RACK1A mediated ABA signaling pathways. Plant Signaling & Behavior 14(6):1600394. https://doi.org/10.1080/15592324.2019.1600394

Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006). Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1-24. https://doi.org/10.1007/s10681-006-6156-9

Dong S, Zhang S, Wei S, Liu Y, Li C, Bo K, Miao H, Gu X, Zhang S (2020). Identification of Quantitative Trait Loci controlling high-temperature tolerance in cucumber (Cucumis sativus L.) seedlings. Plants 9(9):155. https://doi.org/10.3390/plants9091155

Dramadri IO, Nkalubo ST, Kelly JD (2019). Identification of QTL associated with drought tolerance in Andean common bean. Crop Science 59(3):1007-1020. https://doi.org/10.2135/cropsci2018.10.0604

Duan AQ, Yang XL, Feng K, Liu JX, Xu ZS, Xiong AS (2020). Genome –ide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.). Computational Biology and Chemistry 84:07186. https://doi.org/10.1016/j.compbiolchem.2019.107186

El-Esawi MA, Al-Ghamdi AA, Ali HM, Ahmad M (2019). Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat (Triticum aestivum L.). Genes 10(2):163. https://doi.org/10.3390/genes10020163

Elshayb OM, Nada AM, Sadek AH, Ismail SH, Shami A, Alharbi BM, ... Seleiman MF (2022). The integrative effects of biochar and ZnO nanoparticles for enhancing rice productivity and water use efficiency under irrigation deficit conditions. Plants 11(11):1416. https://doi.org/10.3390/plants11111416

Fan G, Li X, Deng M, Zhao Z, Yang L (2016). Comparative analysis and identification of miRNAs and their target genes responsive to salt stress in diploid and tetraploid Paulownia fortunei seedlings. PLoS One 11(2):e0149617. https://doi.org/10.1371/journal.pone.0149617

Farhat S, Jain N, Singh N, Sreevathsa R, Dash PK, Rai R, Yadav S, Kumar, Sarkar AK, Jain A, Singh NK (2019). CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Cell and Developmental Biology 96:91-99. https://doi.org/10.1016/j.semcdb.2019.05.003

Fávero PJR, Mara DAL, Dos SBM (2018). Overexpression of ScMYBAS1 alternative splicing transcripts differentially impacts biomass accumulation and drought tolerance in rice transgenic plants. PLoS One 13:e0207534. https://doi.org/10.1371/journal.pone.0207534

Fincheira P, Tortella G, Duran N, Seabra AB, Rubilar O (2020). Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Critical Reviews in Biotechnology 40:15-30. https://doi.org/10.1080/07388551.2019.1681931

Gantait S, Mondal S (2018). Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors. Journal of Genetic Engineering and Biotechnology 16: 537–544. https://doi.org/10.1016/j.jgeb.2018.08.005

Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B (2016). A cotton miRNA is involved in regulation of plant response to salt stress. Scientific Reports 6(1):19736. https://doi.org/10.1038/srep19736

Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials 13:400-408. https://doi.org/10.1038/nmat3890 .

Haliloglu K, Hosseinpour A, Cinisli Kan T, Ozturk H, Ozkan G, Pour-Aboughadareh A, Poczai P (2020). Investigation of the protective roles of zinc oxide nanoparticles and plant growth promoting bacteria on DNA damage and methylation in tomato (Solanum lycopersicum L.) under salinity stress. Horticulture, Environment, and Biotechnology 12:245.

Han Y, Yin S, Huang L, Wu X, Zeng J, Liu X, Qiu L, Munns R, Chen ZH, Zhang G (2018). A Sodium Transporter HvHKT1;1 Confers salt tolerance in barley via regulating tissue and cell ion homeostasis. Plant & Cell Physiology 59:1976-1989. https://doi.org/10.1093/pcp/pcy116

Hang N, Shi T, Liu Y, Ye W, Taier G, Sun Y, Wang K, Zhang W (2021). Overexpression of Os‐microRNA408 enhances drought tolerance in perennial ryegrass. Physiologia Plantarum 172(1):733-747. https://doi.org/10.1111/ppl.13276

He G-H, Xu J-Y, Wang Y-X, Liu J-M, Li P-S, Chen M, Ma Y-Z, Xu Z-S (2016). Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biology 16:116. https://doi./org/10.1186/s12870-016-0806-4

He Z, Li Z, Lu H, Huo L, Wang Z, Wang Y, Ji X (2019). The NAC protein from Tamarixhispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability. Plants 8:221. https://doi.org/10.3390/plants8070221

Hojjat S.S (2019). Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. Open Access Journal of Environmental and Soil Sciences 2(2):193-198. https://doi.org/10.32474/OAJESS.2019.02.000132

Hong Y, Meng J, He X, Zhang Y, Liu Y, Zhang C, Qi H, Luan Y (2020). Editing miR482b and miR482c simultaneously by CRISPR/Cas9 enhanced tomato resistance to Phytophthora infestans. Phytopathology 111(6):1008-1016. https://doi.org/10.1094/PHYTO-08-20- 0360-R

Ikram M, Raja NI, Javed B, Hussain M, Hussain M, Ehsan M, Rafique N, Malik K, Sultana T, Akram A (2020). Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress. Green Processing and Synthesis 9(1):706-714. https://doi.org/10.1515/gps-2020-0067

Islam M, Ontoy, Subudhi PK (2019). Meta-Analysis of quantitative trait loci associated with seedling-stage salt tolerance in rice (Oryza sativa L.). Plants 8(2):33. https://doi.org/10.3390/plants8020033

Jain M (2015). Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Frontiers in Plant Science 6:2011-2014. https://doi.org/10.3389/fpls.2015.00375

Jatan R, Lata CH (2019). Role of microRNAs in abiotic and biotic stress resistance in plants. Proceedings of the Indian National Science Academy 85:553-567. https://doi.org/10.1007/s12010-014-0914-2

Jian H, Yang BO, Zhang A, Ma J, Ding Y, Chen Z, Li J, Xu X, Liu L (2018). Genome wide identification of microRNAs in response to cadmium stress in oilseed rape (Brassica napus L.) using high-throughput sequencing. International Journal of Molecular Sciences 19:1431. https://doi.org/10.3390/ijms19051431

Jin C, Li K-Q, Xu X-Y, Zhang H-P, Chen H-X, Chen Y-H, Hao J, Wang Y, Huang X-S, Zhang S-L (2017). A novel NAC transcription factor, PbeNAC1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress-responsive genes. Frontiers in Plant Science 8:1049. https://doi.org/10.3389/fpls.2017.01049

Kalteh M, Alipour ZT, Ashraf S, Marashi Aliabadi M, Falah Nosratabadi A (2018). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks 4(3):49-55.

Karvar M, Azari A, Rahimi A (2022). Titanium dioxide nanoparticles (TiO2-NPs) enhance drought tolerance and grain yield of sweet corn (Zea mays L.) under deficit irrigation regimes. Acta Physiologiae Plantarum 44:14. https://doi.org/10.1007/s11738-021-03349-4

Kim C-Y, Vo KTX, Nguyen CD, Jeong D-H, Lee S-K, Kumar M, Kim S- R, Park S-H, Kim J-K, Jeon J-S (2016). Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71. Plant Biotechnology Reports 10:13-23. https://doi.org/10.1007/s11816-015-0383-2

Kiranmai K, Lokanadha Rao G, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, … Sudhakar C (2018). A novel WRKY transcription factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) enhances drought stress tolerance in transgenic groundnut (Arachis hypogaea L.) plants. Frontiers in Plant Science 9:346. https://doi.org/10.3389/fpls.2018.00346

Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T (2017). OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant Journal 91:657-670. https://doi.org/10.1111/tpj.13595

Kuang L, Shen Q, Wu L, Yu J, Fu L, Wu D, Zhang G (2019). Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis. Environmental and Experimental Botany 160:59-70. https://doi.org/10.1016/j.envexpbot.2019.01.006

Li C, Yan C, Sun Q, Yuan C, Mou Y, Shan S, Zhao X (2021). The BHLH transcription factor AhbHLH112 improves the drought tolerance of peanut. BMC Plant Biology 21: 1-12. https://doi.org/10.1186/s12870-021-03318-6

Li S, Fu Q, Chen L, Huang W, Yu D (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237-1252. https://doi.org/10.1007/s00425-011-1375-2

Li X, Wang Y, Chen S, Tian H, Fu D, Zhu B, Luo Y, Zhu H (2018). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in Plant Science 9:559. https://doi.org/10.3389/fpls.2018.00559

Li Y, Zhu N, Liang X, Bai X, Zheng L, Zhao J, Li Y, Zhang Z, Gao Y (2020). Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg(ii) in soybean (Glycine max). Environmental Science: Nano 7:1807-1817. https://doi.org/10.1039/D0EN00091D

Li Z, Cheng Q, Gan Z, Hou Z, Zhang Y, Li Y, Li H, Nan H, Yang C, Chen L, Lu S (2020). Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. Crop Journal 9(4):767-776. https://doi.org/10.1016/j.cj.2020.09.005.

Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin K.M, Lin F, Wang Y, Sun G, Zhou T, Zhu T (2016). GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific Reports 6(1):1-4. https://doi.org/10.1038/srep35040

Liang QY, Wu YH, Wang K, Bai ZY, Liu QL, Pan YZ, Zhang L, Jiang BB (2017). Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum. Scientific Reports 7(1):1-10. https://doi.org/10.1038/s41598-017-05170-x

Liu Q, Yan S, Yang T, Zhang S, Chen Y-Q, Liu B (2017). Small RNAs in regulating temperature stress response in plants. Journal of Integrative Plant Biology 59:774-791. https://doi.org/10.1111/jipb.12571

Ma J, Gao X, Liu Q, Shao Y, Zhang D, Jiang L, Li C (2017). Overexpression of TaWRKY146 increases drought tolerance through inducing stomatal closure in Arabidopsis thaliana. Frontiers in Plant Science 8:2036. https://doi.org/10.3389/fpls.2017.02036

Meng X, Wang J-R, Wang G-D, Liang X-Q, Li X-D, Meng Q-W (2015). An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. Journal of Plant Physiology 175:1-8. https://doi.org/10.1016/j.jplph.2014.09.018

Mishra GP, Singh B, Seth T, Singh AK, Halder J, Krishnan N, Tiwari SK, Singh PM (2017). Biotechnological advancements and begomovirus management in Okra (Abelmoschus esculentus L.), status and perspectives. Frontiers in Plant Science 8:360. https://doi.org/10.3389/fpls.2017.00360

Muehlbauer FJ, Cho S, Sarker A, McPhee KE, Coyne CJ, Rajesh PN, Ford R (2006). Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149-165. https://doi.org/10.1007/s10681-006-7108-0

Mukhtar T, Rehman Su, Smith D, Sultan T, Seleiman MF, Alsadon AA, Amna, Ali S, Chaudhary HJ, Solieman THI, Ibrahim AA, Saad MAO (2020) Mitigation of Heat Stress in Solanum lycopersicum L. by ACC-deaminase and Exopolysaccharide Producing Bacillus cereus: Effects on Biochemical Profiling. Sustainability 12(6):2159. https://doi.org/10.3390/su12062159

Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, Galla A, Abdelrahman M, Sharma M, Singh AK (2019). Harnessing genome editing techniques to engineer disease resistance in plants. Frontiers in Plant Science 10:550. https://doi.org/10.3389/fpls.2019.00550

Nadarajah K, Kumar IS (2019). Drought response in rice: The miRNA story. International Journal of Molecular Sciences 20:3766. https://doi.org/10.3390/ijms20153766

Ni Z, Hu Z, Jiang Q, Zhang H (2013). GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Molecular Biology 82:113-129. https://doi.org/10.1007/s11103-013-0040-5

Nieves-Cordones M, Mohamed S, Tanoi K, Kobayashi NI, Takagi K, Vernet A, Guiderdoni E, Périn C, Sentenac H, Véry AA (2017). Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas system. The Plant Journal 92:43-56. https://doi.org/10.1111/tpj.13632

Ning W, Zhai H, Yu J, Liang S, Yang X, Xing X, Huo J, Pang T, Yang Y, Bai X (2017). Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Molecular Breeding 37(2):19. https://doi.org/10.1007/s11032-016-0614-4

Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H (2017). Biotechnological advancements for improving floral attributes in ornamental plants. Frontiers in Plant Science 8:530. https://doi.org/10.3389/fpls.2017.00530

Osakabe Y, Osakabe K (2017). Genome editing to improve abiotic stress responses in plants. Progress in Molecular Biology and Translational Science 149:99-109. https://doi.org/10.1016/bs.pmbts.2017.03.007

Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R (2016). Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Scientific Reports 6:26685. https://doi.org/10.1038/srep26685

Paixão JFR, Gillet F, Ribeiro TP, Bournaud C, Lourenço-tess IT, Noriega DD, De Melo BP, De Almeida-engler J, Grossi-de-sa MF (2019). Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone AcetylTransferase. Scientific Reports 9:8080. https://doi.org/10.1038/s41598-019-44571-y

Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016). Soybean miR172a improves salt tolerance and can function as a long-distance signal. Molecular Plant 9(9):1337-1340. https://doi.org/10.1016/j.molp.2016.05.010

Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi Y.K, Arora S, Reddy MK (2017). Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Frontiers in Plant Science 8:581. https://doi.org/10.3389/fpls.2017.00581

Qin Y, Tian Y, Liu X (2015). A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multi pleabiotic stress tolerance in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 464:428-433. https://doi.org/10.1016/j.bbrc.2015.06.128

Qiu T, Du K, Jing Y, Zeng Q, Liu Z, Li Y, Ren Y, Yang J, Kang X (2021). Integrated transcriptome and miRNA sequencing approaches provide insights into salt tolerance in allotriploid Populus cathayana. Planta 254:25. https://doi.org/10.1007/s00425-021-03600-9

Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011). Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environmental and Experimental Botany 71:89-98. https://doi.org/10.1016/j.envexpbot.2010.10.021

Raineri J, Ribichich KF, Chan RL (2015). The sunflower transcription factor HaWRKY76 confers drought and flood of Arabidopsis thaliana plants without yield penalty. Plant Cell Reports 34:2065-2080. https://doi.org/10.1007/s00299-015-1852-3

Rao S, Balyan S, Jha S, Mathur S (2020). Novel insights into expansion and functional diversification of MIR169family in tomato. Planta 251:55. https://doi.org/10.1007/s00425-020-03346-w

Roy S (2016). Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior 11:e1117723. https://doi.org/10.1080/15592324.2015.1117723

Roy R, Núez-Delgado A, Sultana S, Wang J, Mmunirf A, Battaglia M, Sarker T, Seleiman MF, Barmon M, Zhang RQ (2021). Additions of optimum water, spent mushroom compost and wood biochar to improve the growth performance of althaea rosea in drought-prone coal-mined spoils. Journal of Environmental Management 295:113076. https://doi.org/10.1016/j.jenvman.2021.113076

Salisu SB, Mehari TG, Ahmad A, Tajo SM, Ibrahim S, Iqbal MS, Elasad M, Zhang J, Wei H, Yu S (2021). Genome wide identification and characterization of mitogen activated protein kinase (MAPK) genes reveals their potential in enhancing drought and salt stress tolerance in Gossypium hirsutum. Research Square PPR432727. https://doi.org/10.21203/rs.3.rs-1078536/v1

Sander JD, Joung JK (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology 32(4):347-355. https://doi.org/10.1038/nbt.2842

Saxena R, Tomar RS, Kumar M (2016). Exploring nano biotechnology to mitigate abiotic stress in crop plants. Journal of Pharmaceutical Sciences and Research 8(9):974.

Seleiman MF (2019). Use of plant nutrients in improving abiotic stress tolerance in wheat. In: Hasanuzzaman M, Nahar K, Hossain M (Eds). Wheat Production in Changing Environments. Springer, Singapore: pp 481-495. https://doi.org/10.1007/978-981-13-6883-7_19

Seleiman MF, Almutairi KF, Alotaibi M, Shami A, Alhammad BA, Battaglia ML (2021a). Nano-Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants 10(1):2. https://doi.org/10.3390/plants10010002

Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML (2021b). Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 10(2):259. https://doi.org/10.3390/plants10020259

Seleiman MF, Kheir AM (2018). Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193:538-546. https://doi.org/10.1016/j.chemosphere.2017.11.053

Seleiman MF, Santanen A, Mäkelä P (2020). Recycling sludge on cropland as fertilizer-Advantages and risks. Resources, Conservation & Recycling 155:104647. https://doi.org/10.1016/j.resconrec.2019.104647

Seleiman MF, Semida WM, Rady MM, Mohamed GF, Hemida KA, Alhammad BA, Hassan MM, Shami A (2020). Sequential Application of Antioxidants Rectifies Ion Imbalance and Strengthens Antioxidant Systems in Salt-Stressed Cucumber. Plants 9(12):1783. https://doi.org/10.3390/plants9121783

Semida WM, Abdelkhalik A, Mohamed GF, Abd El-Mageed TA, Abd El-Mageed SA, Rady MM, Ali EF (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10:421. https://doi.org/10.3390/plants10020421

Sharma A, Ruiz-Manriquez LM, Serrano-Cano FI, Reyes-Perez PR, Tovar Alfaro CK, Baron Andrade YE, Hernandez Aros AK, Srivastava A, Paul S (2020). Identification of microRNAs and their expression in leaf tissues of guava (Psidium guajava L.) under salinity stress. Agronomy 10:1920. https://doi.org/10.3390/agronomy10121920

Sharma DK, Torp AM, Rosenqvist E, Ottosen C-O, Andersen SB (2017). QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Frontiers in Plant Science 8:1668. https://doi.org/10.3389/fpls.2017.01668

Shen L, Wang C, Fu Y, Wang J, Liu Q, Zhang X, Yan C, Qian Q, Wang K (2018). QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology 60:89-93. https://doi.org/10.1111/jipb.12501

Shi GQ, Fu JY, Rong LJ, Zhang PY, Guo CJ, Kai XI (2018). TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance. Journal of Integrative Agriculture 17(11): 2369-2378. https://doi.org/10.1016/S2095-3119(17)61879-3

Shi J, Gao H, Wang H, Lafitte HR, Archibald R.L, Yang M, Hakimi SM, Mo H, Habben JE (2017). ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15:207-216. https://doi.org/10.1111/pbi.12603

Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK (2018). Overexpression of OsNAC14 improves drought tolerance in rice. Frontiers in Plant Science 9:310. https://doi.org/10.3389/fpls.2018.00310

Singh VK, Singh AK (2019). Role of microbially synthesized nanoparticles in sustainable agriculture and environmental management. Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology. Woodhead Publishing 2019, pp 55-73. https://doi.org/10.1016/B978-0-12-817004-5.00004-X

Sun M, Shen Y, Yang J, Cai X, Li H, Zhu Y, Jia B, Sun X (2020). miR535 negatively regulates cold tolerance in rice. Molecular Breeding 40:14. https://doi.org/10.1007/s11032-019-1094-0

Taha R, Seleiman MF, Alotaibi M, Alhammad BA, Rady MM, Mahdi AHA (2020). Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy 10(11):1741. https://doi.org/10.3390/agronomy10111741

Takeuchi K, Hasegawa H, Gyohda A, Komatsu S, Okamoto T, Okada K, Terakawa T, Koshiba T (2016). Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell, Tissue and Organ Culture 127(1):35-46. https://doi.org/10.1007/s11240-016-1027-0

Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, … Zhao B (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low cd-accumulating indica rice without compromising yield. Scientific Reports 7:14438. https://doi.org/10.1038/s41598-017-14832-9

Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q (2017). A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants 3:17018. https://doi.org/10.1038/nplants.2017.18

Tiwari S, Lata C (2019). Genome engineering in rice: applications, advancements and future perspectives. In: Singh S, Upadhyay S, Pandey A, Kumar S (Eds). Molecular Approaches in Plant Biology and Environmental Challenges. Energy, Environment, and Sustainability. Springer, Singapore, pp 323-337. https://doi.org/10.1007/978-981-15-0690-1_15

Tran MT, Doan DT, Kim J, Song YJ, Sung YW, Das S, Kim EJ, Son GH, Kim SH, Van Vu T, Kim JY (2021). CRISPR/Cas9-based precise excision of SlHyPRP1 domain (s) to obtain salt stress-tolerant tomato. Plant Cell Reports 40(6):999-1011. https://doi.org/10.1007/s00299-020-02622-z

Upadhyay U, Singh P, Verma OP (2019). Role of microRNAs in regulating drought stress tolerance in maize. Journal of Pharmacognosy and Phytochemistry 8:328-331.

Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H, Ashraf I, Sanaullah M (2020). Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment 721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778

Vakilian KA (2020). Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Scientific Reports 10:3041. https://doi.org/10.1038/s41598-020-59981-6

Wang J, Tao F, An F, Zou Y, Tian W, Chen X, Xu X, Hu X (2017). Wheat transcription factor TaWRKY70 ispositively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Molecular Plant Pathology 18:649-661. https://doi.org/10.1111/mpp.12425

Wang Q, Liu N, Yang X, Tu L, Zhang X (2016). Small RNA-mediated responses to low- and high-temperature stresses in cotton. Scientific Reports 6:35558. https://doi.org/10.1038/srep35558

Wang Y, Shu Z, Wang W, Jiang X, Li D, Pan J, Li X (2016). CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses. Biologia Plantarum 60(3):443-451. https://doi.org/10.1007/s10535-016-0618-2

Wąsek I, Dyda M, Gołębiowska G, Tyrka M, Rapacz M, Szechyńska‑Hebda M, Wędzony M (2021). Quantitative trait loci and candidate genes associated with freezing tolerance of winter triticale (× Triticosecale Wittmack). Journal of Applied Genetics 63:15-33. https://doi.org/10.1007/s13353-021-00660-1

Wei Q, Zhang F, Sun F, Luo Q, Wang R, Hu R, Chen M, Chang J, Yang G, He G (2017). A wheat MYB transcriptional repressor TaMyb1D regulates phenylpropanoid metabolism and enhances tolerance to drought and oxidative stresses in transgenic tobacco plants. Plant Science 265:112-123. https://doi.orgg/10.1016/j.plantsci.2017.09.020

Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, Yu L, Wu Z (2019). Identification of heat-tolerance QTL and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biology 19:398. https://doi.org/10.1186/s12870-019-2008-3

Xie F, Wang Q, Sun R, Zhang B (2015). Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. Journal of Experimental Botany 66:789-804. https://doi.org/10.1093/jxb/eru437

Xing C, Liu Y, Zhao L, Zhang S, Huang X (2019). A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. Plant, Cell & Environment 42:832-845. https://doi.org/10.1111/pce.13387

Yang A, Dai X, Zhang W-H (2012). A R2R3-type MYB gene, OsMYB2 is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany 63:2541-2556. https://doi.org/10.1093/jxb/err431

You J, Chan Z (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science 6:1092. https://doi.org/10.3389/fpls.2015.01092

Young ND (1996). QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology 34: 479-501. https://doi.org/10.1146/annurev.phyto.34.1.479

Yu QH, Wang B, Li N, Tang Y, Yang S, Yang T, Xu J, Guo C, Yan P, Wang Q, Asmutola P (2017). CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf-life tomato lines. Scientific Reports 7:11874. https://doi.org/10.1038/s41598-017-12262-1

Yu Y, Wang L, Chen J, Liu Z, Park CM, Xiang F (2018). WRKY71 acts antagonistically against salt-delayed flowering in Arabidopsis thaliana. Plant & Cell Physiology 59: 414-422. https://doi.org/10.1093/pcp/pcx201

Yu YT, Wu Z, Lu K, Bi C, Liang S, Wang XF, Zhang DP (2016). Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity, and improves both drought tolerance and seed productivity in Arabidopsis thaliana. Plant Molecular Biology 90:267-279. https://doi.org/10.1007/s11103-015-0411-1

Zhang B (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany 66:1749-1761. https://doi.org/10.1093/jxb/erv013

Zhang X, Wang W, Wang M, Zhang HY, Liu JH (2016). The miR396b of Poncirustrifoliata functions in cold tolerance by regulating ACC oxidase gene expression and modulating ethylene–polyamine homeostasis. Plant & Cell Physiology 57:1865-1878. https://doi.org/10.1093/pcp/pcw108

Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, Xiao F, Ye Z (2011). Over-expression of microRNA169confers enhanced drought tolerance to tomato. Biotechnology Letters 33:403-409. https://doi.org/10.1007/s10529-010-0436-0

Zhang Y, Deng G, Fan W, Yuan L, Wang H, Zhang P (2019). NHX1 and eIF4A1-stacked transgenic sweet potato shows enhanced tolerance to drought stress. Plant Cell Reports 38(11):1427-1438. https://doi.org/10.1007/s00299-019-02454-6

Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG, Liu H, Li S, Luo H (2018). Transgenic creeping bentgrass overexpressing OsamiR393aexhibits altered plant development and improved multiple stress tolerance. Plant Biotechnology Journal 17:233-251. https://doi.org/10.1111/pbi.12960

Zhao Y, Tian X, Wang F, Zhang L, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H (2017). Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biology 17:208. https://doi.org/10.1186/s12870-017-1158-4

Zhao Y, Yang Z, Ding Y, Liu L, Han X, Zhan J, Wei X, Diao Y, Qin W, Wang P, Liu P (2019). Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis. Plant Science 286:28-36. https://doi.org/10.1016/j.plantsci.2019.05.021

Published

2022-09-12

How to Cite

ALJABRI, M. (2022). Abiotic stress enhancement tools for improving crop tolerance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(3), 12855. https://doi.org/10.15835/nbha50312855

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha50312855