Effect of Pectimorf on the rooting ability, and morpho-physiological trials of national cocoa (Theobroma cacao L.) under different substrates

Authors

  • Juan J. REYES-PEREZ Universidad Técnica Estatal de Quevedo, Quevedo EC 120501, Los Ríos (EC)
  • Luis T. LLERENA-RAMOS Universidad Técnica Estatal de Quevedo, Quevedo EC 120501, Los Ríos (EC)
  • Víctor H. REYNEL CHILA Universidad Técnica Luis Vargas Torres, Facultad de Ciencias Agropecuarias, Estación Experimental Mutile, Esmeraldas (EC)
  • Juan A. TORRES-RODRIGUEZ Investigador Independiente, La Paz, Baja California Sur, 23070 (MX)
  • Saad FAROUK Mansoura University, Faculty of Agriculture, Agricultural Botany Department, 35516 Mansoura (EG)
  • Luis G. HERNANDEZ-MONTIEL Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, 23096 (MX)
  • Wilmer TEZARA Universidad Técnica Luis Vargas Torres, Facultad de Ciencias Agropecuarias, Estación Experimental Mutile, Esmeraldas; Universidad Central de Venezuela, Instituto de Biología Experimental, Apartado 47114, Caracas, 1041-A (VE)

DOI:

https://doi.org/10.15835/nbha50312847

Keywords:

bioregulator, cuttings, root lenght, photosynthesis

Abstract

Cocoa is an economical cash crop that is formerly planted worldwide. Cuttings are a method of vegetative propagation suitable for maintaining desirable characteristics in cocoa trees. A greenhouse experiment was performed to evaluate the optimal concentrations of Pectimorf® (0, 10, 50, and 100 mg L-1) for rooting ability and seedling establishment as well as some physiological trials of 4 months EETP-800 national cocoa cuttings grown under two different substrates (S1: 80% soil + 20% sand and S2: 70% soil + 20% sand + 10% rice husk). The data showed that in most cases there are no significant differences in vegetative growth and root characteristics as well as gas exchange parameters between the two substrates. On the other hand, the application of Pectimorf® concentration enhanced all tested traits compared to untreated plants. The most effective in this regard was 100 mg L-1, that giving the highest value of all trials. As for the interaction effect, the result also shows that the application of Pectimorf® concentration in special at 100 mg L-1 among two substrates had an additive effect on plant growth, gas exchange, and survival percentage compared to non-treated cuttings. The application of 100 mg L-1 Pectimorf® with S2 substrate produced stronger seedlings with a higher survival percentage. This protocol can be used commercially for cocoa propagation commercially.

References

Acosta DL, Menéndez DC, Rodríguez AF (2018). Los oligogalacturónidos en el crecimiento y desarrollo de las plantas. Cultivos Tropicales 39(2):127-134.

Ávila-Lovera E, Coronel I, Jaimez R, Urich R, Pereyra G, Araque O, … Tezara W (2016). Ecophysiological traits of adult trees of Criollo cocoa cultivars (Theobroma cacao L.) from a germplasm bank in Venezuela. Experimental Agriculture 52:137-153. https://doi.org/10.1017/S0014479714000593

Barrientos FP (2015). The cocoa value chain in Peru and its opportunities in the global market. Semestre Económico 18(37):129-156.

Borges-García M, Reyes-Avalos D, Zayas-Acosta J, Destrade-Batista R (2015). Efecto de Pectimorf® en el enraizamiento in vitro de plantas de ‘FHIA-18’ (Musa AAAB). Biotecnología Vegetal 15(4):227-232.

De Almeida J, Herrera A, Tezara W (2018). Phenotypic plasticity to photon flux density of physiological, anatomical and growth traits in a modern Criollo cocoa clone. Physiologia Plantarum 166(3):821-832. https://doi.org/10.1111/ppl.12840

Enríquez G (2004). Cacao Orgánico. Guía para productores ecuatorianos. INIAP (Manual No. 54), pp 360.

Falcón AB, Cabrera JC (2007). Actividad enraizadora de una mezcla de oligogalacturónidos en pecíolos de violeta africana (Saintpaulia ionantha). Cultivos Tropicales 28(2):87-90.

García-Briones AR, Pico-Pico BF, Jaimez R (2021). La cadena de producción del cacao en Ecuador: Resiliencia en los diferentes actores de la producción. Revista Digital Novasinergia 4(2):152-172. https://doi.org/10.37135/ns.01.08.10

Hernández MM, Suárez L, Valcárcel M (2009). Empleo del pectimorf en la micropropagación de Spathiphyllum sp. Cultivos Tropicales 30(3):56-58.

ICCO (International Cocoa Organization) (2022). Quarterly Bulletin of Cocoa Statistics, year 2021/2021.

https//www.icco.org/statistics/other-statisticaldata. html. [Consultation date: March 10, 2020]. Retrieved from: https://www.icco.org/aboutus/international-cocoa-agreements/

INEC (2018). Encuesta de Superficie y Producción. Retrieved from https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/

Iwasaki K-I, Matsubara Y (2000). Purification of pectate oligosaccharides showing root-growth-promoting activity in lettuce using ultrafiltration and nanofiltration membranes. Journal of Bioscience and Bioengineering 89(5):495-497. https://doi.org/10.1016/s1389-1723(00)89104-5

Izquierdo H (2013). Empleo de nuevas sustancias como reguladores del crecimiento en la micropropagación del banano (Musa spp.) cultivar 'FHIA- 18' (AAAB). PhD Thesis. Instituto Nacional de Ciencias Agrícolas. La Habana.

Izquierdo H, González M, Núñez M, Proenza R, Cabrera J (2009). Influencia de un oligogalacturónido en la aclimatización de vitroplantas de banano (Musa spp.) del clon ‘FHIA-18’ (AAAB). Cultivos Tropicales 30(1):37-42.

Jaimez RE, Amores Puyutaxi F, Vasco A, Loor RG, Tarqui O, Quijano G, … Tezara W (2018). Photosynthetic response to low and high light of cacao growing without shade in an area of low evaporative demand. Acta Biológica Colombiana 23(1):95-103. https://doi.org/10.15446/abc.v23n1.64962

Jaimez RE, Loor R, Arteaga F, Márquez V, Tezara W (2022). Differential response of photosynthetic activity, leaf nutrient content and yield to long-term drought in cacao (Theobroma cacao L.) Acta Agronómica 70(3). https://doi.org/10.15446/acag.v70n3.92252

Kaku T, Tabuchi A, Wakabayashi K, Hoson T (2004). Xyloglucan oligosaccharides cause cell wall loosening by enhancing xyloglucan endotransglucosylase/hydrolase activity in azuki bean epicotyls. Plant Cell Physiology 45(1):77-82. https://doi.org/10.1093/pcp/pch007

Kollárová K, Zelko I, Henselová M, Capek P, Liskova1 D (2012). Growth and anatomical parameters of adventitious roots formed on mung bean hypocotyls are correlated with galactoglucomannan oligosaccharides structure. The Scientific World Journal 1:1-7

Lara D, Costales D, Falcón A (2018). Los oligogalacturónidos en el crecimiento y desarrollo de las plantas. Cultivos Tropicales 39:127-134.

Loor-Solórzano RG, Amores-Puyutaxi FM, Vasco-Medina SA, Quiroz-Vera JG, Casanova-Mendoza TDJ, Garzón-Catota AI, ... Zambrano-Flores FG (2019). INIAP-EETP-800 ‘Aroma pichilingue’, nueva variedad ecuatoriana de cacao fino de alto rendimiento. Revista Fitotecnia Mexicana 42(2):187-189.

McDougall GJ, Fry SC (1990). Xyloglucan oligosaccharides promote growth and activate cellulase: evidence for a role of cellulase in cell expansion. Plant Physiol 93(3):1042-1048. https://doi.org/10.1104/ pp.93.3.1042

Ramírez A, Cruz N, Franchialfaro O (2003). Uso de bioestimuladores en la producción de guayaba (Psidium guajava L.) mediante el enraizamiento de esquejes. Cultivo Tropicales. 24(1):59-63.

Ramos-Hernández L, Arozarena-Daza NJ, Lescaille-Acosta J, García-Cisneros F, Tamayo-Aguilar Y, Castañeda-Hidalgo E, … Rodríguez-Ortiz G (2013). Dosis de pectimorf® para enraizamiento de esquejes de guayaba var. Enana Roja Cubana. Revista Mexicana de Ciencias Agrícolas 4(S6):1093-1105.

Reyes-Pérez JJ, Llerena-Ramos LT, Ramos-Remache RA, Ramírez-Arrebato MÁ, Falcón-Rodríguez AB, Pincay-Ganchozo RA, … Rivas-García T (2021b). Effect of chitosan on the vegetative propagation of cacao (Theobroma cacao L.) by stem cuttings. Terra Latinoamericana 39:1-9. https://doi.org/10.28940/terra.v39i0.1008

Reyes-Pérez JJ, Ramos-Remache RA, Llerena-Ramos LT, Ramírez-Arrebato MÁ, Falcón-Rodríguez AB (2021a). Potencialidades de oligolacturónidos y quitosacáridos en el enraizamiento de las plantas. Terra Latinoamericana 39:1-9. e846. https://doi.org/10.28940/terra.v39i0.846

Rizo-Álvarez M, Morales-Querol D, Sánchez-Santana T, López-Vigoa O, Olivera-Castro Y, Benítez-Álvarez MA, … Ruz-Suárez F (2018). Influencia del EcoMic® y el Pectimorf® en el establecimiento de Leucaena leucocephala (Lam.) de Wit. cv. Cunningham. Pastos y Forrajes 41(3):183-188.

Rodríguez-Izquierdo L, Chinea-Horta A, Falcón-Rodríguez A, Ramos-León JZ, Postal G (2021). Growth and source-sink relationship in carrot plants biostimulated with Quitomax® and Pectimorf®. Cultivos Tropicales 42(4):e09.

Shahrajabian MH, Chaski C, Polyzos N, Petropoulos SA (2021). Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 11(5):698. https://doi.org/10.3390/biom11050698

Sodré GA, Gomes ARS (2019). Cocoa propagation, technologies for production of seedlings. Revista Brasileira de Fruticultura 41(2):1-22. https://dx.doi.org/10.1590/0100-29452019782

Suárez-Guerra L, Hernández-Espinosa M (2015). Efecto del Pectimorf® en el cultivo de ápices de plantas in vitro de yuca (Manihot esculenta Crantz), clones “CMC-40” y “Señorita”. Cultivos Tropicales 36(4):55-62.

Suchithra M (2018). Planting material production in cocoa. In: Training Manual on Cocoa Production Technology, pp. 32-42, ICAR-Central Plantation Crops Research Institute, Kerala, India.

Suzuki T, Tomita-Yokotani K, Tsubura H, Yoshida S, Kusakabe I, Yamada K, Miki Y, Hasegawa K (2002). Plant growth-promoting oligosaccharides produced from tomato waste. Bioresources Technology 81(2):91-96. https://doi.org/10.1016/s0960-8524(01)00124-9

Tezara W, Valencia Caicedo EE, Reynel Chila VH, Bolaños Ortega MJ, Blanco-Flores H (2020). Actividad fotosintética de 10 clones de cacao nacional y su relación con el rendimiento. Revista Espamciencia 11(1):19-27. https://doi.org/10.51260/revista_espamciencia.v11i1.202

Tovar MDL, Guzmán JA, Ramírez LE, García J (2022). Architecture of cocoa genotypes in Colombia as affected by bud type, grafting technique, and pruning. Pelita 38(1):29-42.

Vélez Carvajal NA, Flórez Roncancio VJ, Flórez Rivera AF (2014). Comportamiento de variables químicas en un sistema de cultivo sin suelo para clavel en la Sabana de Bogotá. Revista Facultad Nacional de Agronomía Medellín 67(2):7281-7290. http://dx.doi.org/10.15446/rfnam.v67n2.44170

Wickramasuriya AM, Dunwell JM (2018). Cacao biotechnology: current status and future prospects. Plant Biotechnology Journal 16(1):4-17.

Wiesman Z, Jaenicke H (2002). Introduction to vegetative tree propagation: concepts and principles. In: Jaenicke H, Beniest J (Eds). Vegetative Tree Propagation in Agroforestry: Training Guidelines and References. International Centre for Research in Agroforestry (ICRAF), Nairobi, Kenya, pp 148.

Zamora LMV, Águila SRD, Abad JCG, Torres GV, Correa SAI, Flores ET, ... Guivin MAC (2022). Propagation of Theobroma cacao by rooted cuttings in mini-tunnels. Advances in Agriculture 2022:1-8. https://doi.org/10.1155/2022/1196381

Published

2022-09-16

How to Cite

REYES-PEREZ, J. J., LLERENA-RAMOS, L. T., REYNEL CHILA, V. H., TORRES-RODRIGUEZ, J. A., FAROUK, S., HERNANDEZ-MONTIEL, L. G., & TEZARA, W. (2022). Effect of Pectimorf on the rooting ability, and morpho-physiological trials of national cocoa (Theobroma cacao L.) under different substrates. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(3), 12847. https://doi.org/10.15835/nbha50312847

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha50312847

Most read articles by the same author(s)