Biofortification with magnesium nanofertilizer on bioactive compounds and antioxidant capacity in green beans
DOI:
https://doi.org/10.15835/nbha51112830Keywords:
biofortification, green beans, nanofertilizer, nutraceutical quality, Phaseolus vulgaris L.Abstract
The use of nanofertilizers has the potential to be used to enrich edible organs with nutrients (biofortification) and improve the biosynthesis of bioactive compounds and their antioxidant capacity. Therefore, the objective of this study was to evaluate the effect of biofortification with magnesium (Mg) nanofertilizer on the accumulation of bioactive compounds and antioxidant capacity in green bean cv. Strike compared to a conventional fertilizer (Mg sulfate). Two sources of Mg were applied via foliar: Nanofertilizer and Mg Sulfate at doses of 0, 50, 100, 200, and 300 mg/L of Mg. The accumulation of total polyphenols, flavonoids, anthocyanins, bioactive compounds, and antioxidant capacity was evaluated in pods. The results obtained in this research confirm the effect of green bean pods biofortified with Mg nanofertilizers on the production and accumulation of bioactive compounds and antioxidant capacity, improving the nutrition and nutraceutical quality of green beans. The 50 mg/L dose of Mg nanofertilizer was the most effective treatment to increase bioactive compounds and antioxidant capacity compared to high doses of Mg sulfate (300 mg/L). This is one of the first studies focused on biofortification with Mg nanofertilizers and their effect on the nutraceutical quality of green beans.
References
Adom KK, Liu RH (2002). Antioxidant activity of grains. Journal Agriculture Food Chemistry 50:6182-6187. https://doi.org/10.1021/jf0205099
Aquino EN, Garzon AK, Alba JE, Chavez JL, Vera AM, Carrillo JC, Santos MA (2021). Physicochemical characterization and functional potential of Phaseolus vulgaris L. and Phaseolus coccineus L. landrace green beans. Agronomy Journal 11:803. https://doi.org/10.3390/agronomy11040803
Brand W, Cuvelier ME, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Cakmak I, White PJ (2020). Magnesium in crop production and food quality. Plant and Soil 457:1-3. https://doi.org/10.1007/s11104-020-04751-6
Cedeño JR, García JV, Solórzano CM, Jiménez LAJ, Ulloa SM, López FX, Sánchez AB (2022). Fertilization with magnesium in plantain ‘Barraganete’ (Musa AAB) Ecuador. Life Sciences Journal 35:8-19. https://doi.org/10.17163/lgr.n35.2022.01
Ciscomani JP, Sánchez E, Jacobo JL, Sáenz HK, Orduño N, Cruz O, Ávila GD (2021). Biofortification efficiency with magnesium salts on the increase of bio-active compounds and antioxidant capacity in snap beans. Rural Science 51(6):e20200442. https://doi.org/10.1590/0103-8478cr20200442
Desai B, Desai V, Desai P, Singh D, Suthar H (2017). Effect of magnesium nanoparticles on physiology and stevioside in Stevia rebaudiana Bertoni. European Journal of Biomedical Science 4:642-646. https://www.ejbps.com/ejbps/abstract_id/3085
Dewanto V, Wu KK, Liu RH (2002). Thermal processing improves the nutritional value of tomatoes by increasing total antioxidant activity. Journal Agriculture and Food Chemistry 50:3010-3014. https://doi.org/10.1021/jf0115589
Guisti MM, Wrolstad RE (2001). Characterization and measurement of anthocyanins by UV-Visible spectroscopy. Current Anal food protocol Chemistry 47:4631-4637. https://doi.org/10.1002/0471142913.faf0102s00
Guo W, Nazim H, Liang Z, Yang D (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal 4(2):83-91. https://doi.org/10.1016/j.cj.2015.11.003
Hu J, Chen G, Zhang Y, Cui B, Yin W, Yu X, Zhu Z, Hu Z (2015). Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plants and Biochemistry 97:304-312. https://doi.org/10.1016/j.plaphy.2015.10.019
Jeroen HF, de Baaij, Joost GJ, Hoenderop, René JM (2015). Magnesium in Man: Implications for Health and Disease. Physiological Reviews 95(1):1-46. https://doi.org/10.1152/physrev.00012.2014
Jiratanan T, Hai R (2004). Antioxidant activity of processed table beet (Beta vulgaris var. conditiva) and green beans (Phaseolus vulgaris L.). Journal Agriculture and Food Chemistry 52:2659-2670. https://doi.org/10.1021/jf034861d
Liu R, Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514:131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104
Morales A, Alvarado CJ, Andueza RH, Tun JM, Medina KB (2020). Nutritional and nutraceutical quality of cowpea green bean (Vigna unguiculata [L] Walp.) from the Yucatan peninsula. Ecosistemas y Recursos Agropecuarios 7(3):e2541. https://doi.org/10.19136/era.a7n3.2541
Palacio A, Ramírez CA, Gutiérrez NJ, Sánchez E, Ojeda DL, Chávez C, Sida JP (2021). Efficiency of foliar application of zinc oxide nanoparticles versus zinc nitrate complexed with chitosan on nitrogen assimilation, photosynthetic activity and production of green bean (Phaseolus vulgaris L.). Scientia Horticulturae 288:110297. https://doi.org/10.1016/j.scienta.2021.110297
Quinones M, Michael M, Aleixandre A (2012). Polyphenols, naturally occurring compounds with healthy effects on the cardiovascular system. Nutr Hosp 27:76-89. https://doi.org/10.1590/S0212-16112012000100009
Rathore I, Tarafdar JC (2015). Perspectives of biosynthesized magnesium nanoparticles in foliar application of wheat plant. Journal of Bionanoscience 9(3):209-214. https://doi.org/10.1166/jbns.2015.1296
Rodríguez R, Suárez B (2020). Development and validation of the ultrasound-assisted extraction (UAE) and HPLC-DAD method for the determination of polyphenols in dried beans (Phaseolus vulgaris). Journal of Food Composition and Analysis 85:103334. https://doi.org/10.1016/j.jfca.2019.103334
Rojas C, Perez A. (2020). Nanofertilizantes para cereales: situación actual y perspectivas futuras. Terras 1:62-66. https://dialnet.unirioja.es/servlet/articulo?codigo=8288779
Salcido-Martínez A, Sánchez E, Licón- Trillo LP, Pérez-Álvarez S, Palacio-Márquez A, Amaya-Olivas NI, Preciado-Rangel P (2020). Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(4):1-15. https://doi.org/10.15835/nbha[12090
Sánchez E, Ruiz JM, Romero L (2016). Nitrogen compounds stress indicators in response to toxic doses of Nitrogen and deficient in green beans. Nova Science 8:228-244.
Sande D, Diaz M, Milian YE, Castro I, Source L, Altunaga N, Lugo Y, Colenc G, Aparecida J (2016). Mulberry (Morus alba) roots natural and hybrid varieties: phenolic content and nutraceutical potential as an antioxidant Journal. App. Farmacia Ciencia 6:63-69. https://doi.org/10.7324/JAPS.2016.601110
Shebl A, Hassan AA, Salama DM, Abd ME, Abd MS (2020). Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon 26:3:e03596. https://doi.org/10.1016/j.heliyon.2020.e03596
Singleton V, Rossi JA (1965). Colorimetry of total phenolic compounds with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144-158.
Villarreal G, Escajeda J, Amaya N, Chavez D, Neder D, Ayala JG, Quintero A, Ruiz T, Hernández L (2022). Determination of phenolic compounds in blue corn flour (Zea mays L.) produced and/or metabolized by Colletotrichum gloesporioides in a fermentation process Fermentation 8:2-11. https://doi.org/10.3390/fermentation8060243
Yang QQ, Farha A, Chen L, Kim G, Zhang T, Corke H (2020). Phenolic content and antioxidant activity in vitro in common beans (Phaseolus vulgaris L.) are not directly related to antiproliferative activity. Food Bioscience 36:100662. https://doi.org/10.1016/j.fbio.2020.100662
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nubia I. AMAYA-OLIVAS, Esteban SÁNCHEZ, León HERNÁNDEZ-OCHOA, Damaris L. OJEDA-BARRIOS, Graciela D. ÁVILA-QUEZADA, María A. FLORES-CÓRDOVA, David CHÁVEZ-FLORES, Juan G. AYALA-SOTO, Alondra SALCIDO-MARTÍNEZ, Carlos A. RAMÍREZ-ESTRADA
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.