Efficacy of the application of boron nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans
DOI:
https://doi.org/10.15835/nbha51112795Keywords:
micronutrient, nanotechnology, nanoparticles, Phaseolus vulgaris L.Abstract
Boron (B) nanofertilizers are an innovative alternative with great potential to make nutrient application more efficient and thereby improve crop growth and productivity. However, nowadays there is little literature on the effects of boron nanofertilizers on physiological and biochemical processes in plants. Therefore, the objective of the present research was to study the efficacy of foliar application of a boron nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans plants cv. Strike. The B nanofertilizer was foliar applied at 0, 25, 50 and 100 ppm. Biomass accumulation, yield, nitrate reductase enzyme activity, photosynthetic activity, stomatal conductance and photosynthetic pigment content were evaluated. The results obtained indicate that the application of B nanofertilizer at dose of 25 ppm were more effective in improving biomass, while the dose of 100 ppm favoured nitrate reductase activity and stomatal conductance. The results suggest that the application of B nanofertilizers stimulated the development of green bean plants. Finally, more studies are needed to evaluate the possible phytotoxic effects of high doses of B nanofertilizers and to compare their effects with conventional B fertilizers already used in the market.
References
Al-Amery MM, Hamza JH, Fuller MP (2011). Effect of boron foliar application on reproductive growth of sunflower (Helianthus annuus L.). International Journal of Agronomy 2011:230712 https://doi.org/10.1155/2011/230712
Alves-Flores R, Alves Rodrigues R, Pinheiro da Cunha P, Damin V, Martins Arruda E, de Oliveira Abdala K, Cardoso Donegá M (2018). Grain yield of Phaseolus vulgaris in a function of application of boron in soil. Journal of soil science and plant nutrition 18(1):144-156. http://dx.doi.org/10.4067/S0718-95162018005000701
Andreon-Viçosi K, dos Santos de Carvalho A, Castilho Silva D, de Paula Almeida F, Ribeiro D, Alves Flores R (2020). Foliar fertilization with boron on the growth, physiology, and yield of snap beans. Journal of Soil Science and Plant Nutrition 20(3):917-924. https://doi.org/10.1007/s42729-020-00178-1
Azcón-Bieto JA, Talón M (2013). Fundamentos de fisiología vegetal. Publicacions i Edicions Universitat de Barcelona.
Bañón S, Miralles J, Ochoa J, Sánchez-Blanco MJ (2012). The effect of salinity and high boron on growth, photosynthetic activity and mineral contents of two ornamental shrubs. Horticultural Science 39(4):188-194. https://www.agriculturejournals.cz/publicFiles/78256.pdf
Bellaloui N, Reddy KN, Gillen AM, Abel CA (2010). Nitrogen metabolism and seed composition as influenced by foliar boron application in soybean. Plant and Soil 336(1):143-155. https://doi.org/10.1007/s11104-010-0455-6
Bhupenchandra I, Basumatary A, Kumar A, Dutta S, Kalita P, Singh LK, ... Verma G (2021). Physiological performance, yield and quality of crops as influenced by boron. The Indian Journal of Agricultural Sciences 91(4):568-572.
Borja-Bravo M, García-Salazar JA (2022). El Programa de Fertilizantes para el Bienestar y el mercado de frijol en México [The Fertilizer for Wellness Program and the bean market in Mexico]. Agronomía Mesoamericana 33(2):47216-47216. https://doi.org/10.15517/am.v33i2.47216
Caamal-Pat ZH, Casas-García RA, Urbano-López-de-Meneses B (2014). Optimización económica y ambiental de la fertilización en explotaciones de una región europea [Economic and environmental optimization of fertilization on farms in a European region]. Revista Chapingo. Serie Horticultura 20(1):117-129. https://doi.org/10.5154/r.rchsh.2013.12.046
Chhipa H (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15(1):15-22. https://doi.org/10.1007/s10311-016-0600-4
Cunha ARD, Katz I, Sousa ADP, Martinez-Uribe RA (2015). Índice SPAD en el crecimiento y desarrollo de plantas de Lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido [SPAD index according to growth and development of lisianthus plants in relation to different nitrogen levels under protected environment]. Idesia (Arica) 33(2):97-105. http://hdl.handle.net/11449/167850
Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016). Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Scientia Horticulturae 210:57-64. https://doi.org/10.1016/j.scienta.2016.07.003
De Ron AM, Papa R, Bitocchi E, González AM, Debouck DG, Brick MA, … Casquero PA (2015). Common Bean. In: De Ron A (Ed). Grain Legumes. Handbook of Plant Breeding vol 10. Springer, New York, NY, pp 1-36 https://doi.org/10.1007/978-1-4939-2797-5_1
Deswal K, Pandurangam V (2018). Morpho-physiological and biochemical studies on foliar application of zinc, iron and boron in maize (Zea mays L.). Journal of Pharmacognosy and Photochemistry 7(2):3515-3518. https://www.phytojournal.com/archives/2018/vol7issue2/PartAW/7-2-573-638.pdf
El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Elmahrouk M, Bayoumi Y, Domokos-Szabolcsy É (2018). Plant nano-nutrition: perspectives and challenges. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (Eds). Nanotechnology, Food Security and Water Treatment. Environmental Chemistry for a Sustainable World. Springer, Cham., pp 129-161. https://doi.org/10.1007/978-3-319-70166-0_4
FAO, FIDA, OMS, PMA y UNICEF (2021). El estado de la seguridad alimentaria y la nutrición en el mundo 2021. Transformación de los sistemas alimentarios en aras de la seguridad alimentaria, una mejor nutrición y dietas asequibles y saludables para todos [The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable, healthy diets for all]. Roma, FAO. https://doi.org/10.4060/cb5409es
Flores RA, Silva TV, Damin V, Marques Carvalho R de C, Pereira DRM, Souza Junior JP (2018). Common bean productivity following diverse boron applications on soil. Communications in Soil Science and Plant Analysis 49(6):725-734. https://doi.org/10.1080/00103624.2018.1435679
Genaidy EA, Abd-Alhamid N, Hassan HS, Hassan AM, Hagagg LF (2020). Effect of foliar application of boron trioxide and zinc oxide nanoparticles on leaves chemical composition, yield and fruit quality of Olea europaea L. cv. Picual. Bulletin of the National Research Centre 44(1):1-12. https://doi.org/10.1186/s42269-020-00335-7
Ibrahim NK, Al Farttoosi HAK (2019). Response of mung bean to boron nanoparticles and spraying stages (Vigna radiata L.). Plant Archives 19(2):712-715. http://www.plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/126%20(712-715).pdf
Kah M, Kookana RS, Gogos A, Bucheli TD (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology 13(8):677-684. https://doi.org/10.1038/s41565-018-0131-1
Keshavarz K, Vahdati K, Samar M, Azadegan B, Brown PH (2011). Foliar application of zinc and boron improves walnut vegetative and reproductive growth. HortTechnology 21(2):181-186. https://doi.org/10.21273/HORTTECH.21.2.181
Kocal N, Sonnewald U, Sonnewald S (2008). Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiology 148(3):1523-1536. https://doi.org/10.1104/pp.108.127977
Kumar N, Misra R, Shankhdhar SC, Shankdhar D (2015). Effect of foliar application of boron on growth, yield, chlorophyll, amylose and nitrate reductase activity in rice. ORYZA-An International Journal on Rice 52(2):123. http://dx.doi.org/10.15666/aeer/1705_1264912666
Landi M, Degl’Innocenti E, Pardossi A, Guidi L (2012). Antioxidant and photosynthetic responses in plants under boron toxicity: a review. American Journal of Agricultural and Biological Sciences 7:255-270. http://dx.doi.org/10.3844/ajabssp.2012.255.270
Lizarazo MÁ, Hernández CA, Fischer G, Gómez MI (2013). Biomasa, parámetros foliares y sintomatología en respuesta a diferentes niveles de manganeso, zinc y boro en curuba (Passiflora tripartita var. mollissima) [Biomass, foliar parameters and symptomatology in response to different levels of manganese, zinc and boron in curubas (Passiflora tripartita var. mollissima)]. Revista Colombiana de Ciencias Hortícolas 7(1):31-45. https://doi.org/10.17584/rcch.2013v7i1.2033
Mahadule PA, Sale RB (2018). Effect of foliar sprays of boron on growth, yield, nutrient uptake and quality of French bean (Phaseolus vulgaris L.) in entisol: A review. Journal of Pharmacognosy and Phytochemistry 7(5):74-78. https://www.phytojournal.com/archives/2018/vol7issue5/PartB/7-4-545-360.pdf
Marschner H (2012). Marschner's mineral nutrition of higher plants. Academic press (3rd ed), London, UK.
Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018). Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Applied Ecology and Environmental Research 16(2):1883-1897. http://dx.doi.org/10.15666/aeer/1602_18831897
Meier S, Moore F, Morales A, González ME, Seguel A, Meriño-Gergichevich C, ... Mejías J (2020). Synthesis of calcium borate nanoparticles and its use as a potential foliar fertilizer in lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plant Physiology and Biochemistry 151:673-680. https://doi.org/10.1016/j.plaphy.2020.04.025
Mitra GN (2015). Regulation of nutrient uptake by plants. New Delhi: Springer, pp 978-981.
Moreno DL, Quiroga IA, Balaguera-López HE, Magnitskiy S (2016). El estrés por boro afecta la fotosíntesis y la síntesis de compuestos antioxidantes en plantas. Una revisión [Boron stress affects photosynthesis and synthesis of antioxidant compounds in plants. A review]. Revista Colombiana de Ciencias Hortícolas 10(1):137-148. https://doi.org/10.17584/rcch.2016v10i1.4189
Reguera M (2009). Papel central del boro en el diálogo molecular de la simbiosis Rhizobium-Leguminosas y en procesos de organogénesis [Central role of boron in the molecular dialogue of Rhizobium-Leguminosae symbiosis and in organogenesis processes]. Tesis Doctoral. Universidad Autónoma de Madrid.
Romero-Méndez MJ (2018). Dinámica de nano-fertilizantes en la producción de cultivos hortícolas [Dynamics of nano-fertilizers in horticultural crop production]. Tesis de doctorado. Universidad Autónoma de San Luis Potosí.
Sánchez E, Rivero RM, Ruiz JM, Romero L (2004). Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Scientia Horticulturae 99(3-4):237-248. https://doi.org/10.1016/S0304-4238(03)00114-6
SAS (2004). The SAS® System for Windows®(Ver. 9.0).
Seth K, Aery NC (2017). Boron induced changes in biochemical constituents, enzymatic activities, and growth performance of wheat. Acta Physiologiae Plantarum 39(11): 244 https://doi.org/10.1007/s11738-017-2541-3
Shireen F, Nawaz MA, Chen C, Zhang Q, Zheng Z, Sohail H, ... Bie Z (2018). Boron: functions and approaches to enhance its availability in plants for sustainable agriculture. International Journal of Molecular Sciences 19(7):1856. https://doi.org/10.3390/ijms19071856
SIAP. (2021). Panorama agroalimentario 2021[Agrifood Outlook 2021]. Servicio de Información Agroalimentaria y Pesquera. Consultado (22/03/2022) https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2021/Panorama-Agroalimentario-2021
Singh H, Sharma A, Bhardwaj SK, Arya SK, Bhardwaj N, Khatri M (2021). Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environmental Science: Processes & Impacts 23(2):213-239. https://doi.org/10.1039/D0EM00404A
Sutulienė R, Ragelienė L, Duchovskis P, Miliauskienė J (2022). The Effects of nano-copper,-molybdenum,-boron, and-silica on Pea (Pisum sativum L.) Growth, Antioxidant Properties, and Mineral Uptake. Journal of Soil Science and Plant Nutrition 22(1):801-814. https://doi.org/10.1007/s42729-021-00692-w
Tripathi DK, Singh S, Singh S, Mishra S, Chauhan DK, Dubey NK (2015). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiologiae Plantarum 37(7):1-14. https://doi.org/10.1007/s11738-015-1870-3
Vishekaii ZR, Soleimani A, Fallahi E, Ghasemnezhad M, Hasani A (2019). The impact of foliar application of boron nano-chelated fertilizer and boric acid on fruit yield, oil content, and quality attributes in olive (Olea europaea L.). Scientia Horticulturae 257:108689. https://doi.org/10.1016/j.scienta.2019.108689
Wang JZ, Tao ST, Qi KJ, Wu J, Wu HQ, Zhang SL (2011). Changes in photosynthetic properties and antioxidative system of pear leaves to boron toxicity. African Journal of Biotechnology 10(85):19693-19700. https://doi.org/10.5897/AJB11.2608
Wasaya A, Shahzad Shabir M, Hussain M, Ansar M, Aziz A, Hassan W, Ahmad I (2017). Foliar application of zinc and boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. Journal of soil science and plant nutrition 17(1):33-45. http://dx.doi.org/10.4067/S0718-95162017005000003
Wellburn AR (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144(3):307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science 289:110270. https://doi.org/10.1016/j.plantsci.2019.110270
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Cristina L. FRANCO-LAGOS, Esteban SÁNCHEZ, Alejandro PALACIO-MÁRQUEZ, Sandra PÉREZ-ÁLVAREZ, Marina TERRAZAS-GÓMEZ, Octavio VILLALOBOS-CANO, Carlos A. RAMÍREZ-ESTRADA
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.