Efficiency and assimilation of nitrogen in bean plants through foliar application of zinc and molybdenum nano fertilizer


  • Carlos A. RAMÍREZ-ESTRADA Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua C.P 33089 (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua C.P 33089 (MX)
  • María A. FLORES-CORDOVA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Carranza y Escorza S/N, Col. Centro, Chihuahua 31000, Chihuahua (MX)
  • Celia CHÁVEZ-MENDOZA Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua C.P 33089 (MX)
  • Ezequiel MUÑOZ-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua C.P 33089 (MX)
  • Alejandro PALACIO-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua C.P 33089 (MX)
  • Karla I. HERNÁNDEZ-FIGUEROA Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua C.P 33089 (MX)




absorption, nitrogen use efficiency, nitrogen metabolism, nanofertilizer Mo-Zn, Phaseolus vulgaris L.


Fertilization with nanoparticles offers alternatives to improve the efficiency of nutrient absorption in a sustainable way in crops. The objective of this work was to study the influence of foliar application of zinc-molybdenum nanofertilizer (Nano ZnMo) on nitrogen (N) use efficiency (NUE), as well as on yield parameters and N assimilation in green bean plants cv. “Strike”. Three doses of Nano ZnMo (0, 4 and 8 ppm) were applied foliar in combination with four doses of N in the form of NH4NO3 in nutrient solution (0, 3, 6 and 12 mM). The treatment that obtained the greatest increase in total biomass was the combination of 6 mM N + 4 ppm Nano ZnMo, with an increase of 11.6% compared to the treatment without application of Nano ZnMo. The treatment that registered the highest yield was the combination of 3 mM of N + 4 ppm of Nano ZnMo with an increase of 39.3% compared to the treatment without foliar application of Nano ZnMo (3 mM of N). The utilization coefficients (NUtE) and NUE were favored with the foliar application of Nano ZnMo at 4 ppm in combination with 3 and 6 mM of N in nutrient solution. These treatments made it possible to reduce the dose of N fertilization without compromising production. Therefore, the foliar adhesion of Nano ZnMo makes it possible to improve the efficiency of nutrient absorption and sustainably increase crop productivity.


Metrics Loading ...


Adhikari T, Kundu S, Rao AS (2013). Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). International Journal of Agriculture and Food Science Technology 4(8):809-816.

Al-Juthery HW and Al-Maamouri EHO (2020). Effect of urea and nano-nitrogen fertigation and foliar application of nano-boron and molybdenum on some growth and yield parameters of potato. Al-Qadisiyah Journal for Agriculture Sciences 10(1):253-263. DOI: https://doi.org/10.33794/qjas.2020.167074

Alam, F, Kim TY, Kim SY, Alam, SS, Pramanik P, Kim PJ, Lee YB (2015). Effect of molybdenum on nodulation, plant yield and nitrogen uptake in hairy vetch (Vicia villosa Roth). Soil Science and Plant Nutrition 61(4):664-675. https://doi.org/10.1080/00380768.2015.1030690 DOI: https://doi.org/10.1080/00380768.2015.1030690

Alloway BJ (2013). Molybdenum. Heavy Metals in Soils. Springer, Dordrecht, pp 527-534. https://doi.org/10.1007/978-94-007-4470-7_21 DOI: https://doi.org/10.1007/978-94-007-4470-7_21

Azizi E, Mirbolook A, Behdad A (2017). The effect of different concentrations of nano-molybdenum and calcium fertilizers on growth parameters and nodulation of chickpea (Cicer arietinum L.). Electronic Journal of Crop Production 9(4):179-199.

Bambara S, Ndakidemi PA (2010). Effects of Rhizobium inoculation, lime and molybdenum on nitrogen fixation of nodulated Phaseolus vulgaris L. African Journal of Microbiology Research 4(9):682-696.

Bittner F (2014). Molybdenum metabolism in plants and crosstalk to iron. Frontiers in Plant Science 5:28. https://doi.org/10.3389/fpls.2014.00028 DOI: https://doi.org/10.3389/fpls.2014.00028

Borgognone D, Colla G, Rouphael Y, Cardarelli M, Rea E., Schwarz D (2013). Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Scientia Horticulturae 149:61-69. https://doi.org/10.1016/j.scienta.2012.02.012 DOI: https://doi.org/10.1016/j.scienta.2012.02.012

Brown PH, Bassil E (2011). Overview of the acquisition and utilization of boron, chlorine, copper, manganese, molybdenum, and nickel by plants and prospects for improvement of micronutrient use efficiency. The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell. Oxford, UK, pp 377-428. https://onlinelibrary.wiley.com/doi/10.1002/9780470960707.ch17 DOI: https://doi.org/10.1002/9780470960707.ch17

Callejas R, Kania E, Contreras, A, Peppi, C, Morales L (2013). Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia (Arica) 31(4):19-26. http://dx.doi.org/10.4067/S0718-34292013000400003 DOI: https://doi.org/10.4067/S0718-34292013000400003

Celmeli T, Sari H, Canci H, Sari D, Adak A, Eker T, Toker C (2018). The nutritional content of common bean (Phaseolus vulgaris L.) landraces in comparison to modern varieties. Agronomy 8(9):166. https://doi.org/10.3390/agronomy8090166 DOI: https://doi.org/10.3390/agronomy8090166

Chhipa H (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 15(1): 15-22. https://doi.org/10.1007/s10311-016-0600-4 DOI: https://doi.org/10.1007/s10311-016-0600-4

Delfani M, Baradarn Firouzabadi M, Farrokhi N, Makarian H (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis 45(4):530-540. https://doi.org/10.1080/00103624.2013.863911 DOI: https://doi.org/10.1080/00103624.2013.863911

Ding W, Xu X, He P, Ullah S, Zhang J, Cui Z, Zhou W (2018). Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: A meta-analysis. Field Crops Research 227:11-18. https://doi.org/10.1016/j.fcr.2018.08.001 DOI: https://doi.org/10.1016/j.fcr.2018.08.001

Ditta A (2012). How helpful is nanotechnology in agriculture?. Advances in Natural Sciences: Nanoscience and Nanotechnology 3(3):033002. https://doi.org/10.1088/2043-6262/3/3/033002 DOI: https://doi.org/10.1088/2043-6262/3/3/033002

El Habbasha S, Mohamed MH, El-Lateef EA, Mekki B, Ibrahim M (2013). Effect of combined zinc and nitrogen on yield, chemical constituents and nitrogen use efficiency of some chickpea cultivars under sandy soil conditions. World Journal of Agricultural Sciences 9(4):354-360. http://eprints.icrisat.ac.in/12412/

Frota RT, Carvalho IR, Loro MV, Demari GH, Hutra, DJ, Lautenchleger, F, ... Aumonde TZ (2020). Molybdenum and potassium in the foliar fertilization and seed quality in the soybean. Agronomy Science and Biotechnology 6:1-9. https://doi.org/10.33158/ASB.r117.v6.2020 DOI: https://doi.org/10.33158/ASB.r117.v6.2020

Gad N, Kandil H (2013). Evaluate the effect of molybdenum and different nitrogen levels on cowpea (Vigna anguiculata). International Journal of Applied Science - Research and Review 9(3):1490-1497.

Gupta SC, Gangwar S (2012). Effect of molybdenum, iron and microbial inoculants on symbiotic traits, nutrient uptake and yield of chickpea. Journal of Food Legumes 25(1):45-49.

Hachiya T, Sakakibara H (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany 68(10):2501-2512. https://doi.org/10.1093/jxb/erw449 DOI: https://doi.org/10.1093/jxb/erw449

Hafeez BM, Khanif YM, Saleem M (2013). Role of zinc in plant nutrition-a review. Journal of Experimental Agriculture International 3(2):374-391. https://doi.org/10.9734/AJEA/2013/2746 DOI: https://doi.org/10.9734/AJEA/2013/2746

Hamlin RL (2016). Molybdenum. Handbook of Plant Nutrition. Pp 391-410. DOI: https://doi.org/10.1201/9781420014877-16

Hildebrandt TM, Nesi AN, Araújo WL, Braun HP (2015). Amino acid catabolism in plants. Molecular Plant 8(11):1563-1579. https://doi.org/10.1016/j.molp.2015.09.005 DOI: https://doi.org/10.1016/j.molp.2015.09.005

Hille R, Nishino T, Bittner F (2011). Molybdenum enzymes in higher organisms. Coordination Chemistry Reviews 255(9-10):1179-1205. https://doi.org/10.1016/j.ccr.2010.11.034 DOI: https://doi.org/10.1016/j.ccr.2010.11.034

Horchani F, R'bia O, Hajri R, Aschi-Smiti S (2011). Nitrogen nutrition and ammonium toxicity in higher plants. International Journal of Botany 7(1):1-16. https://doi.org/10.3923/ijb.2011.1.16 DOI: https://doi.org/10.3923/ijb.2011.1.16

Ide Y, Kusano M, Oikawa A, Fukushima A, Tomatsu H, Saito K, ... Fujiwara T (2011). Effects of molybdenum deficiency and defects in molybdate transporter MOT1 on transcript accumulation and nitrogen/sulphur metabolism in Arabidopsis thaliana. Journal of Experimental Botany 62(4):1483-1497. https://doi.org/10.1093/jxb/erq345 DOI: https://doi.org/10.1093/jxb/erq345

Imran M, Sun X, Hussain S, Ali U, Rana M S, Rasul F, ... Hu CX (2019). Molybdenum-induced effects on nitrogen metabolism enzymes and elemental profile of winter wheat (Triticum aestivum L.) under different nitrogen sources. International Journal of Molecular Sciences 20(12):3009. https://doi.org/10.3390/ijms20123009 DOI: https://doi.org/10.3390/ijms20123009

Iqbal SM, Afzal I (2014). Evaluating the response of nitrogen application on growth development and yield of quinoa genotypes. International Journal of Agriculture and Biology 16(5):886-892.

Jabeen N, Ahmad R (2017). Growth response and nitrogen metabolism of sunflower (Helianthus annuus L.) to vermicompost and biogas slurry under salinity stress. Journal of Plant Nutrition 40(1):104-114. https://doi.org/10.1080/01904167.2016.1201495 DOI: https://doi.org/10.1080/01904167.2016.1201495

Jones MG, Blonder R, Gardner GE, Albe V, Falvo M, Chevrier J (2013). Nanotechnology and nanoscale science: educational challenges. International Journal of Science Education 35(9):1490-1512. https://doi.org/10.1080/09500693.2013.771828 DOI: https://doi.org/10.1080/09500693.2013.771828

Kant S, Bi YM, Rothstein SJ (2011). Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of experimental Botany 62(4):1499-1509. https://doi.org/10.1093/jxb/erq297 DOI: https://doi.org/10.1093/jxb/erq297

Kant S (2018). Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency. In Seminars in Cell & Developmental Biology 74:89-96. https://doi.org/10.1016/j.semcdb.2017.08.034 DOI: https://doi.org/10.1016/j.semcdb.2017.08.034

Kanwar MK, Sun S, Chu X, Zhou J (2019). Impacts of metal and metal oxide nanoparticles on plant growth and productivity. In: Nanomaterials and Plant Potential. Springer, Cham. pp 379-392. https://doi.org/10.1007/978-3-030-05569-1_15 DOI: https://doi.org/10.1007/978-3-030-05569-1_15

Karacan MS, Aslantaş N (2008). Simultaneous preconcentration and removal of iron, chromium, nickel with N, N′-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES. Journal of Hazardous Materials 155(3):551-557. https://doi.org/10.1016/j.jhazmat.2007.11.107 DOI: https://doi.org/10.1016/j.jhazmat.2007.11.107

Korotkova AM, Lebedev SV, Gavrish IA (2017). The study of mechanisms of biological activity of copper oxide nanoparticle CuO in the test for seedling roots of Triticum vulgare. Environmental Science and Pollution Research International 24(11):10220. https://doi.org/10.1007/s11356-017-8549-9 DOI: https://doi.org/10.1007/s11356-017-8549-9

Kovács B, Puskás-Preszner A, Huzsvai L, Lévai L, Bódi É (2015). Effect of molybdenum treatment on molybdenum concentration and nitrate reduction in maize seedlings. Plant Physiology and Biochemistry 96:38-44. https://doi.org/10.1016/j.plaphy.2015.07.013 DOI: https://doi.org/10.1016/j.plaphy.2015.07.013

Krotz L, Giazzi G (2014). Nitrogen, carbon and sulfur determination in paper by flash combustion. http://apps.thermoscientific.com/media/cmd/hypersite-events/Pittcon-2014/posters/PN42211_PC2014.pdf

Kruger NJ (2009). The Bradford method for protein quantitation. The Protein Protocols Handbook, pp 17-24. https://doi.org/10.1007/978-1-59745-198-7_4 DOI: https://doi.org/10.1007/978-1-59745-198-7_4

Lebedev SV, Gavrish IA, Galaktionova LV, Korotkova AM, Sizova EA (2019). Assessment of the toxicity of silicon nanooxide in relation to various components of the agroecosystem under the conditions of the model experiment. Environmental Geochemistry and Health 41(2):769-782. https://doi.org/10.1007/s10653-018-0171-3 DOI: https://doi.org/10.1007/s10653-018-0171-3

Li SX, Wang ZH, Stewart BA (2013). Responses of crop plants to ammonium and nitrate N. Advances in Agronomy 118:205-397. https://doi.org/10.1016/B978-0-12-405942-9.00005-0 DOI: https://doi.org/10.1016/B978-0-12-405942-9.00005-0

Li B, Li G, Kronzucker HJ, Baluška F, Shi W (2014). Ammonium stress in Arabidopsis: signaling, genetic loci, and physiological targets. Trends in Plant Science 19(2):107-114. https://doi.org/10.1016/j.tplants.2013.09.004 DOI: https://doi.org/10.1016/j.tplants.2013.09.004

Luque FA (2012). Metabolismo de ureidos y nucleótidos durante la germinación y desarrollo inicial de plántulas de Phaseolus vulgaris. (Doctoral dissertation, Universidad de Córdoba). http://hdl.handle.net/10396/7649

Mahdieh M, Sangi M R, Bamdad F, Ghanem A (2018). Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition 41(18):2401-2412. https://doi.org/10.1080/01904167.2018.1510517 DOI: https://doi.org/10.1080/01904167.2018.1510517

Manuel TJ, Alejandro CA, Angel L, Aurora G, Emilio F (2018). Roles of molybdenum in plants and improvement of its acquisition and use efficiency. In: Plant Micronutrient Use Efficiency. Academic Press, pp 137-159. https://doi.org/10.1016/B978-0-12-812104-7.00009-5 DOI: https://doi.org/10.1016/B978-0-12-812104-7.00009-5

Marschner H (2011). Marschner's mineral nutrition of higher plants. Academic press.

Massawe PI, Mtei KM, Munishi LK, Ndakidemi PA (2016). Improving soil fertility and crops yield through maize-legumes (common bean and Dolichos lablab) intercropping systems. http://dx.doi.org/10.5539/jas.v8n12p148 DOI: https://doi.org/10.5539/jas.v8n12p148

Mendel RR (2011). Cell biology of molybdenum in plants. Plant Cell Reports 30(10):1787-1797. https://doi.org/10.1007/s00299-011-1100-4 DOI: https://doi.org/10.1007/s00299-011-1100-4

Mishra V, Mishra RK, Dikshit A, Pandey AC (2014). Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Emerging Technologies and Management of Crop Stress Tolerance. pp 159-180. https://doi.org/10.1016/B978-0-12-800876-8.00008-4 DOI: https://doi.org/10.1016/B978-0-12-800876-8.00008-4

Mitra GN (2015). Regulation of nutrient uptake by plants. New Delhi, Springer, pp 978-981. https://doi.org/10.1007/978-81-322-2334-4 DOI: https://doi.org/10.1007/978-81-322-2334-4

Moll RH, Kamprath EJ, Jackson WA (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agronomy Journal 74(3):562-564. https://doi.org/10.2134/agronj1982.00021962007400030037x DOI: https://doi.org/10.2134/agronj1982.00021962007400030037x

Moran-Zuloaga D, Dippold M, Glaser B, Kuzyakov Y (2015). Organic nitrogen uptake by plants: reevaluation by position-specific labeling of amino acids. Biogeochemistry 125(3):359-374. https://doi.org/10.1007/s10533-015-0130-3 DOI: https://doi.org/10.1007/s10533-015-0130-3

Münzbergová Z, Haisel D (2019). Effects of polyploidization on the contents of photosynthetic pigments are largely population-specific. Photosynthesis Research 140(3):289-299. https://doi.org/10.1007/s11120-018-0604-y DOI: https://doi.org/10.1007/s11120-018-0604-y

Mushinskiy AA, Aminova EV (2019, October). Effect of iron, copper and molybdenum nanoparticles on morphometric parameters of Solanum tuberosum L. plants. In IOP Conference Series: Earth and Environmental Science 341(1):012195. https://doi.org/10.1088/1755-1315/341/1/012195 DOI: https://doi.org/10.1088/1755-1315/341/1/012195

Nadeem MA, Yeken MZ, Shahid MQ, Habyarimana E, Yılmaz H, Alsaleh A, … Baloch FS (2021). Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, trascriptomics, transgenics and proteomics. Biotechnology & Biotechnological Equipment 35(1):758-786. https://doi.org/10.1080/13102818.2021.1920462 DOI: https://doi.org/10.1080/13102818.2021.1920462

Nasar J, Qiang G, Alam A (2018). Groundnut response to boron and molybdenum. Journal of Science Frontier Research: D Agriculture and Veterinary 18(1):16-22.

Pereira EI, A Nogueira AR, Cruz CC, Guimarães GG, Foschini MM, Bernardi AC, Ribeiro C (2017). Controlled urea release employing nanocomposites increases the efficiency of nitrogen use by forage. ACS Sustainable Chemistry & Engineering 5(11):9993-10001.

https://doi.org/10.1021/acssuschemeng.7b01919 DOI: https://doi.org/10.1021/acssuschemeng.7b01919

Pratelli R, Pilot G (2014). Regulation of amino acid metabolic enzymes and transporters in plants. Journal of Experimental Botany 65(19):5535-5556. https://doi.org/10.1093/jxb/eru320 DOI: https://doi.org/10.1093/jxb/eru320

Preetha PS, Balakrishnan N (2017). A review of nano fertilizers and their use and functions in soil. International Journal of Current Microbiology and Applied Sciences 6(12):3117-3133. DOI: https://doi.org/10.20546/ijcmas.2017.612.364

Rana MS, Bhantana P, Imran M, Saleem MH (2020). Molybdenum potential vital role in plants metabolism for optimizing the growth and development. Annals of Environmental Science and Toxicology 4(1):032-044. DOI: https://doi.org/10.17352/aest.000024

Rana M, Bhantana P, Sun XC, Imran M, Shaaban M, Moussa M, ... Hu CX (2020). Molybdenum as an essential element for crops: an overview. Biomedical Journal of Scientific and Technological Research 24:18535. https://doi.org/10.26717/BJSTR.2020.24.004104 DOI: https://doi.org/10.26717/BJSTR.2020.24.004104

Rosales EP, Iannone MF, Groppa MD, Benavides MP (2011). Nitric oxide inhibits nitrate reductase activity in wheat leaves. Plant Physiology and Biochemistry 49(2):124-130. https://doi.org/10.1016/j.plaphy.2010.10.009 DOI: https://doi.org/10.1016/j.plaphy.2010.10.009

Rosales MA, Franco-Navarro JD, Peinado-Torrubia P, Díaz-Rueda P, Álvarez R, Colmenero-Flores JM (2020). Chloride improves nitrate utilization and NUE in plants. Frontiers in Plant Science 11:442. https://doi.org/10.3389/fpls.2020.00442 DOI: https://doi.org/10.3389/fpls.2020.00442

Sánchez E, Rivero RM, Ruiz JM, Romero L (2004). Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Scientia Horticulturae 99(3-4):237-248. https://doi.org/10.1016/S0304-4238(03)00114-6 DOI: https://doi.org/10.1016/S0304-4238(03)00114-6

Sánchez E, Soto JM, Ruiz JM, Romero L (2006). Asimilación de nitrógeno en raíces y hojas de frijol ejotero: deficiencia vs toxicidad de nitrógeno. Revista Fitotecnia Mexicana 29(3):187-195. DOI: https://doi.org/10.35196/rfm.2006.3.187

Sánchez E, Ruiz JM, Romero L (2016). Compuestos nitrogenados indicadores de estrés en respuesta a las dosis tóxicas y deficientes de Nitrógeno en frijol ejotero. Nova Scientia 8(16):228-244. DOI: https://doi.org/10.21640/ns.v8i16.439

SAS (2004). The SAS® System for Windows®(Ver. 9.0).

Shivay YS, Prasad R, Singh RK, Pal M (2015). Relative efficiency of zinc-coated urea and soil and foliar application of zinc sulphate on yield, nitrogen, phosphorus, potassium, zinc and iron biofortification in grains and uptake by basmati rice (Oryza sativa L.). Journal of Agricultural Science 7(2):161. https://doi.org/10.5539/jas.v7n2p161 DOI: https://doi.org/10.5539/jas.v7n2p161

Shrestha S, Brueck H, Asch F (2012). Chlorophyll index, photochemical reflectance index and chlorophyll fluorescence measurements of rice leaves supplied with different N levels. Journal of Photochemistry and Photobiology B: Biology 113:7-13. https://doi.org/10.1016/j.jphotobiol.2012.04.008 DOI: https://doi.org/10.1016/j.jphotobiol.2012.04.008

Siddiq M, Uebersax, MA (2012). Dry beans and pulses production and consumption—an overview. Dry beans and pulses production, processing and nutrition, 1-22. https://doi.org/10.1002/9781118448298.ch1 DOI: https://doi.org/10.1002/9781118448298.ch1

Silva AD, Franzini VI, Piccolla CD, Muraoka T (2017). Molybdenum supply and biological fixation of nitrogen by two Brazilian common bean cultivars. Revista Brasileira de Engenharia Agrícola e Ambiental 21:100-105. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n2p100-105

Singh SP (2013). Common bean improvement in the twenty-first century. Springer Science & Business Media.

Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015). Nano-fertilizers and their smart delivery system. In: Nanotechnologies in Food and Agriculture, pp 81-101. https://doi.org/10.1007/978-3-319-14024-7_4 DOI: https://doi.org/10.1007/978-3-319-14024-7_4

Sturikova H, Krystofova O, Huska D, Adam V (2018). Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials 349:101-110. https://doi.org/10.1016/j.jhazmat.2018.01.040 DOI: https://doi.org/10.1016/j.jhazmat.2018.01.040

Symanowicz B, Kalembasa S (2012). Effect of iron, molybdenum and cobalt on the amount of nitrogen biologically reduced by Rhizobium galegae. Ecological Chemistry and Engineering A 19(11):1311-1320. https://bibliotekanauki.pl/articles/388963

Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014). The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Research Letters 9(1):289. https://doi.org/10.1186/1556-276X-9-289 DOI: https://doi.org/10.1186/1556-276X-9-289

Thomas E, Rathore I, Tarafdar J C (2017). Bioinspired production of molybdenum nanoparticles and its effect on chickpea (Cicer

arietinum L). Journal of Bionanoscience 11(2):153-159. https://doi.org/10.1166/jbns.2017.1425 DOI: https://doi.org/10.1166/jbns.2017.1425

Treder W, Klamkowski K, Kowalczyk W, Sas D, Wojcik K (2016). Possibilities of using image analysis to estimate the nitrogen nutrition status of apple trees. Zemdirbyste-Agriculture 103(3):319-326. https://doi.org/10.13080/z-a.2016.103.041 DOI: https://doi.org/10.13080/z-a.2016.103.041

Tokasheva DS, Nurbekova ZA, Akbassova AZ, Omarov RT (2021). Molybdoenzyme participation in plant biochemical processes. Eurasian Journal of Applied Biotechnology (1). DOI: https://doi.org/10.11134/btp.1.2021.2

Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, ur Rehman H, ... Sanaullah M (2020). Nanotechnology in agriculture: Current status, challenges and future opportunities. Science of the Total Environment 721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778 DOI: https://doi.org/10.1016/j.scitotenv.2020.137778

Vieira RF, Paula Jr TJ, Pires AA, Carneiro JE, da Rocha GS (2011). Common bean seed complements molybdenum uptake by plants from soil. Agronomy Journal 103(6):1843-1848. https://doi.org/10.2134/agronj2011.0115 DOI: https://doi.org/10.2134/agronj2011.0115

Wójcik P (2020). Effects of molybdenum sprays on the growth, yield and fruit quality of ‘Red Jonaprince’ apple trees. Scientia Horticulturae 271:109422. https://doi.org/10.1016/j.scienta.2020.109422 DOI: https://doi.org/10.1016/j.scienta.2020.109422

Wurzburger N, Bellenger JP, Kraepiel AM, Hedin LO (2012). Molybdenum and phosphorus interact to constrain asymbiotic nitrogen fixation in tropical forests. PloS One 7(3):e33710. https://doi.org/10.1371/journal.pone.0033710 DOI: https://doi.org/10.1371/journal.pone.0033710

Yang J, Song Z, Ma J, Han H (2020). Toxicity of molybdenum-based nanomaterials on the soybean–rhizobia symbiotic system: implications for nutrition. ACS Applied Nano Materials 3(6):5773-5782. https://doi.org/10.1021/acsanm.0c00943 DOI: https://doi.org/10.1021/acsanm.0c00943

Zewail RM, Ali M, El-Gamal IS, Al-Maracy SH, Islam KR, Elsadek M, ... El-Desouky H S (2021). Interactive effects of arbuscular mycorrhizal inoculation with nano boron, zinc, and molybdenum fertilization on stevioside contents of stevia (Stevia rebaudiana, L.) plants. Horticulturae 7(8):260. https://doi.org/10.3390/horticulturae7080260 DOI: https://doi.org/10.3390/horticulturae7080260

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015). Managing nitrogen for sustainable development. Nature 528(7580):51-59. https://doi.org/10.1038/nature15743 DOI: https://doi.org/10.1038/nature15743



How to Cite

RAMÍREZ-ESTRADA, C. A., SÁNCHEZ, E., FLORES-CORDOVA, M. A., CHÁVEZ-MENDOZA, C., MUÑOZ-MÁRQUEZ, E., PALACIO-MÁRQUEZ, A., & HERNÁNDEZ-FIGUEROA, K. I. (2022). Efficiency and assimilation of nitrogen in bean plants through foliar application of zinc and molybdenum nano fertilizer. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12719. https://doi.org/10.15835/nbha50212719



Research Articles
DOI: 10.15835/nbha50212719

Most read articles by the same author(s)

1 2 > >>