Humic substances and rhizobacteria enhance the yield, physiology and quality of strawberries


  • Simeón MARTÍNEZ-DE LA CRUZ Antonio Narro Autonomous Agrarian University, Department of Horticulture (MX)
  • José A. GONZÁLEZ-FUENTES Antonio Narro Autonomous Agrarian University, Department of Horticulture (MX)
  • Armando ROBLEDO-OLIVO Antonio Narro Autonomous Agrarian University, Department of Food Science and Technology (MX)
  • Rosalinda MENDOZA-VILLARREAL Antonio Narro Autonomous Agrarian University, Department of Horticulture (MX)
  • Armando HERNÁNDEZ-PÉREZ Antonio Narro Autonomous Agrarian University, Department of Horticulture (MX)
  • Miriam D. DÁVILA-MEDINA Autonomous University of Coahuila, Faculty of Chemical Sciences (MX)
  • Daniela ALVARADO-CAMARILLO Antonio Narro Autonomous Agrarian University, Department of Food Science and Technology (MX)



Fragaria x ananassa Duch, fulvic acids, humic acids, microorganisms


The strawberry fruit (Fragaria × ananassa Duch.) is appreciated for its aroma, color, texture and nutritional value. In conventional agriculture, the use of fertilizers damages the environment since it causes loss of soil fertility, salinity and its erosion, hence production alternatives, without harming the environment, are sought. The objective of this study was to evaluate the effect of a biostimulant based on humic substances and rhizobacteria, on the production and quality of the strawberry cultivar ‘San Andreas’. Strawberry plants cultivar ‘San Andreas’ were treated with fulvic acids + mixture of microorganisms, humic acids + Pseudomonas fluorescens, fulvic acids + Azospirillum brasilense, fulvic acids + Pseudomonas fluorescens and the mixture AH and AF + Azospirillum brasilense with two doses (d1, d2) in total 10 treatments were applied plus the control. Humic substances were applied every 15 days and rhizobacteria every 30 days. The results showed that the AFyAzoz d1 increased over control plants, the number of leaves in 38.3%, root volume in 42.6%, the fresh weight in 130% and dry weight in 63.8%, the number of fruits 50.0% and the yield in 59.5%. The AFyPF d1 favored Photosynthesis in 127.3%; AFyPF d1 increased TSS in 25%, AFyPF d2 vitamin C in 17.1% and MHyF + Azoz d1 increased in 20% the content of Phenols. Humic substances plus rhizobacteria are an ecological alternative to be used as biostimulant in the production and quality of strawberry plants.


Agbodjato NA, Adoko MY, Babalola OO, Amogou O, Badé FT, Noumavo PA, Adjanohoun A, Baba-Moussa L (2021). Efficacy of biostimulants formulated with Pseudomonas putida and clay, peat, clay-peat binders on maize productivity in a farming environment in Southern Benin. Frontiers in Sustainable Food Systems 5:666718.

Aghaeifard F, Babalar M, Fallahi E, Ahmadi A (2015). Influence of humic acid and salicylic acid on yield, fruit quality, and leaf mineral elements of strawberry (Fragaria ananassa Duch.) Cv. Camarosa. Journal of Plant Nutrition 39(13):1821-1829.

Álvarez M, Tucta F, Quispe E, Meza V (2018). Incidencia de la inoculación de microorganismos benéficos en el cultivo de fresa (Fragaria sp). Scientia Agropecuaria 9(1):33-42.

Aminifard MH, Aroiee H, Nemati H, Azizi M, Jaafar ZE (2012a). Fulvic acid affects pepper antioxidant activity and fruit quality. African Journal of Biotechnology 11:13179-13185.

Aminifard MH, Aroiee H, Azizi M, Nemati H, Hawa ZE, Jaafar (2012b). Effect of humic acid on antioxidant activities and fruit quality of hot pepper (Capsicum annuum L.). Journal of Herbs, Spices and Medicinal Plants 18(4):360-369.

Andrade A, Fortis M, Preciado P, Orozco JA, Yescas P, Rueda EA (2020). Azospirillum brasilense and solarized manure on the production and phytochemical quality of tomato fruits (Solanum lycopersicum L.). Agronomy 10:12.

AOAC (2000). Association of Official Analytical Chemists. Official Methods, Assoc. Off. Anal. Chem. Int. (AOAC), Arlington, VA, USA.

Arıkan S, Esitken A, Pırlak L, Dönmez MF, Turan M (2020). Plant growth promoting rhizobacteria mitigate deleterious combined effects of salinity and lime in soil in strawberry plants. Journal of Plant Nutrition 12.

Bashan Y (1990). Short exposure to Azospirillum brasilense Cd inoculation enhanced proton efflux of intact wheat roots. Canadian Journal of Microbiology 36:419-425.

Bocanegra MP, Lobartini JC, Orioli GA (2006). Plant uptake of iron chelated by humic acids of different molecular weights. Communications in Soil Science and Plant Analysis 37:239-248.

Bulegon LG, Guimarães VF, Egewarth VA, Santos MG, Heling AL, Ferreira SD, Wengrat APGS, Battistus AG (2016). Growth and gaseous changes in the vegetative period of soybean inoculated with diazotrophic bacteria. Nativa 4(5):277-286.

Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196:15-27

Cano MA (2011). Interacción de microorganismos benéficos en plantas: micorrizas, Trichoderma spp. y Pseudomona spp. [Interaction of beneficial microorganisms in plants: mycorrhizae, trichoderma spp. and pseudomonas spp. A review]. Una revisión. Revista U.D.C.A Actualidad y Divulgación Científica 14(2):15-31.

Castañeda-Saucedo MC, Gómez-González G, Tapia-Campos E, Núñez-Maciel O, Barajas-Pérez JS, Rujano-Silva ML (2013). Efecto de Azospirillum brasilense y fertilización química sobre el crecimiento, desarrollo, rendimiento y calidad de fruto de fresa (fragaria x ananassa Duch) [Effect of azospirillum brasilense and chemical fertilization on the growth, development, yield and fruit quality of strawberry (fragaria x ananassa Duch)]. Revista Interciencia 38(10):737-744.

Domínguez JA, Muñoz D, Planelles R, Grau JM, Artero F, Anriquez A, Albanesi A (2012). Inoculation with Azospirillum brasilense enhances the quality of mesquite Prosopis juliflora seedlings. Forest Systems 21(3):364-372.

Dos Santos RM, Díaz PAE, Lobo LLB and Rigobelo EC (2020). Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Frontiers in Sustainable Food Systems 4:136.

Du Jardin P (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196:3-14.

Esitken A, Yildiz HE, Ercisli S, Figen Donmez M, Turan M, Gunes A (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124(1):62-66.

Ekin Z (2019). Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability 11(12):341711.

Erdogan U, Cakmakci R, Varmazyarı A, Turan M, Erdogan Y, Kıtır N (2016). Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste-Agriculture 103(1):67-76.

Eshghi S, Garazhian M (2015). Improving growth, yield and fruit quality of strawberry by foliar and soil drench applications of humic acid. Iran Agricultural 34(1):14-20.

Feitosa AC, Garófalo LH (2019). Biostimulants and their role in improving plant growth under abiotic stresses. Biostimulants in Plant Science 14.

Fernandes C, Cecato U, Trento T, Mamédio D, Galbeiro S (2020). Azospirillum spp. en gramíneas y forrajeras. Revisión. [Azospirillum spp. in grasses and forages. Review]. Revista Mexicana de Ciencias Pecuarias 11(1):223-240.

Fulton A, Buchner R, Olson B, Schwankl L, Gilles C, Bertagna N, Walton J, Shackel K (2001). Rapid equilibration of leaf and stem water potential under field conditions in almonds, walnuts and prunes. HortTechnology 11:609-615.

Gamboa AP, Delgadillo J, Almaraz JJ, Robledo A, Alarcón A (2019). Respuesta de Fragaria mexicana y comunidades microbianas rizosféricas al aumento de temperatura. [Response of Fragaria mexicana and communities rhizospheric microbial cells to temperature increase]. Revista Biologica Tropicala 67(1):94-106.

González G, Espinosa B, Cano P, Moreno A, Leos L, Sánchez H, Sáenz J (2018). Influence of rhizobacteria in production and nutraceutical quality of tomato fruits under greenhouse condition. Revista Mexicana de Ciencias Agrícolas 9 (2):367-379.

Haggag W, Abo M (2012). Production and optimization of Pseudomonas fluorescens biomass and metabolites for biocontrol of strawberry grey mould. American Journal of Plant Sciences 3:836-845.

Hosseini Farahi M, Aboutalebi A, Eshghi S, Dastyaran M, Yosefi F (2013). Foliar application of humic acid on quantitative and qualitative characteristics of ‘Aromas’ strawberry in soilless culture. Agricultural Communications 1(1):13-16.

InfoStat, Versión (2020). Grupo InfoStat. Universidad Nacional de Córdoba (FCA-UNC). Ciudad Universitaria, Córdoba, Argentina.

Jensen NL, Jensen CR, Liu F (2009). Water relations and abscisic acid in pot-grown strawberry plants under limited irrigation. Journal of the American Society for Horticultural Science 134(5):574-580.

Jindo K, Olivares FL, Malcher DJ, Sánchez MA, Kempenaar C, Canellas LP (2020). From lab to field: role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers Plant Science 11:426.

Kays SJ, Paull RE (2004). Postharvest biology. Exon Press, Athens, GA, USA, pp 568.

Klamkowski K, Trede W (2006). Morphological and physiological responses of strawberry plants to water stress. Agriculturae Conspectus Scientific 71(4):159-165.

Kirschbaum DS, Heredia AM, Funes CF, Quiroga RJ (2019). Effects of biostimulant applications on strawberry crop yield and quality. Horticultura Argentina 38(95):25-40.

Kumar R, Goyal V, Kuhad MS (2005). Influence of fertility–salinity interactions on growth, water status and yield of Indian mustard (Brassica juncea). Indian Journal of Plant Physiology 10:139-144.

López R, González G, Vázquez RE, Olivares E, Vidales JA, Carranza R, Ortega M (2014). Metodología para obtener ácidos húmicos y fúlvicos y su caracterización mediante espectrofotometría infrarroja. [Humic and fulvic acid extraction method and characterization by infrared spectrophotometry]. Revista Mexicana de Ciencias Agrícolas 8:1397-1407.

Lovaisa NC, Guerrero MF, Delaporte PGA, Salazar SM (2015). Response of strawberry plants inoculated with Azospirillum and Burkholderia at field conditions. Rev Agron Noroeste Argent 35(1):33-36.

McFarland J (1907) Nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. Journal of the American Medical Association 14:1176-1178.

Marcondes F, de Assis T, Pereira T, Sales PH, Martinsc AD, Freitas R, Moacir Pasqualc M, Dóriac J (2019). Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiological Research 223(225):120-128.

Medina JM, Pinzón EH, Cely GE (2016). Efecto de sustratos orgánicos en plantas de fresa (Fragaria sp.) cv ‘Albion’ bajo condiciones de campo. [Organic substrates effect in strawberry cv ‘Albion’ (Fragaria sp.) plants, under field conditions]. Revista Ciencia y Agricultura 13(2):19-28.

Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2007). Eficiencia en el uso del agua por las plantas. [Efficiency in the use of water by plants]. Investigaciones Geográficas 43:63-84.

Naik K, Mishra S, Srichandan H, Kumar P, Kumar P (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology 21:12.

Naiman DA, Latrónico A, García DSIE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas fluorescens: Impact on the production and culturable rhizosphere microflora. European Journal of Soil Biology 45:44-51.

Oleńska E, Małek W, Wójcik M (2020). Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment 743:54.

Olivares F, Galba J, Alessandra M, Da Silva L, Oliveira N, Pasqualoto L (2017). Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture 4(30):13.

Ortiz JA, Delgadillo J, Rodríguez MN, Calderón G (2016). Inoculación bacteriana en el crecimiento y calidad del fruto de cinco variedades de fresa en suelos con pH contrastante. [Bacterial inoculation in the growth and quality of the fruit of five strawberry varieties in soils with contrasting pH]. Terra Latinoamericana 34(2):177-185.

Padayatt SJ, Daruwala R, Wang Y, Eck PK, Song J, Koh WS, Levine M (2001). Vitamin C: from molecular actions to optimum intake. In: Handbook of antioxidants. CRC Press, pp 136-165.

Palencia P, Martinez F, Burducea M, Oliveira JA, Giralde I (2016). Efectos del enriquecimiento con SeLENIO en SPAD, calidad de la fruta y parámetros de crecimiento de plantas de fresa en un sistema de cultivo sin suelo. [Effects of Selenio enrichment on SPAD, fruit quality and growth parameters of strawberry plants in soilless growing system]. Revista Brasileira de Fruticultura 3(1):202-212.

Pedraza RO, Motok J, Salazar SM, Ragout AL, Mentel MI, Tortora ML, … Díaz-Ricci JC (2010). Growth promotion of strawberry plants inoculated with Azospirillum brasilense. World Journal of Microbiology and Biotechnology 26:265-272.

Pii Y, Graf H, Valentinuzzi F, Cesco S, Mimmo T (2018). The effects of plant growth-promoting rhizobacteria (PGPR) on the growth and quality of strawberries. Acta Horticulturae 1217:231-238

Pilanal N, Kaplan M (2003). Investigation of effects on nutrient uptake of humic acid applications of different forms to strawberry plant. Journal of Plant Nutrition 26(4):835-843

Piña J, García V, Herrera H, Flores JA (2016). Valoración de cepas silvestres de Azospirillum sp. y Gluconacetobacter sp. como promotoras de crecimiento vegetal. [Rating wild strains of Azospirillum sp. and Gluconacetobacter sp. as promoters of plant growth]. Revista Mexicana de Ciencias Agrícolas 7(7):1613-1623.

Pırlak L, Köse M (2009). Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. Journal of Plant Nutrition 32(7):1173-1184.

Rätsep R, Karp K, Vool E (2015). Effect of post-harvest mowing on strawberry ‘darselect’ growth and yield grown on plastic mulch. Research for Rural Development 1:51-57.

Reina E, Peluzio JM (2017). Water use efficiency in soybean crop after inoculation with Azospirillum brasiliense in the Cerrado of Tocantins State, Brazil. African Journal of Biotechnology 16(39):1922-1928.

Ribaudo MC, Krumpholz ME, Cassa DF, Bottini R, Cantore LM, Cura A (2006). Azospirillum sp. promotes root hair development in tomato plants through a mechanism that involves ethylene. Journal of Plant Growth Regulation 24:175-185.

Rincón A, Martínez E (2015). Funciones del calcio en la calidad poscosecha de frutas y hortalizas: una revisión. [Functions of calcium in the postharvest quality of fruits and vegetables: a review]. Revista Alimentos 24(34):23-25.

Rodríguez DA, Patiño MP, Miranda D, Fischer G, Galvis JA (2005). Efecto de dos índices de madurez y dos temperaturas de almacenamiento sobre el comportamiento en almacenamiento sobre el comportamiento en poscosecha poscosecha poscosecha de la pitahaya amarilla (Selenicereus megalanthus Haw.). [Effect of two maturity indices and two storage temperatures on postharvest behavior of yellow pitahaya (Selenicereus megalanthus Haw.)]. Revista Facultad Nacional de Agronomía 58(2):2837-285.

Saeed M, Ilyas N, Mazhar R, Bibi F, Batool N (2016). Drought mitigation potential of Azospirillum inoculation in canola (Brassica napus). Journal of Applied Botany and Food Quality 278:270-278.

Samra NR, EL-Kady MI, Hikal AR, Ghanem MSH (2017). Effect of organic fertilization on fruit Set, dropping, yield and fruit quality of Washington Navel Orange. Journal of Plant Production 8(8):853-858.

Saidimoradi D, Ghaderia N, Javadia T (2019). Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae 256:15

Shehata SA, Gharib AA, Mohamed M, Abdel Gawad KF, Emad A (2011). Influence of compost, amino and humic acids on the growth, yield and chemical parameters of strawberries. Journal of Medicinal Plants Research 5(11):2304-2308.

Soppelsa S, Kelderer M, Casera C, Bassi M, Robatscher R, Matteazzi A, Andreotti C (2019). Foliar applications of biostimulants promote growth, yield and fruit quality of strawberry plants grown under nutrient limitation. Agronomy 9(9):483.

Steiner AA (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 15:134-154.

Suh HY, Yoo KS, Suh SG (2014). Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.). Horticulture, Environment, and Biotechnology 55:455-461

Todeschini V, Ait Lahmidi N, Mazzucco E, Marsano F, Gosetti F, Robotti E, … Lingua G (2018). Impact of beneficial microorganisms on strawberry growth, fruit production, nutritional quality, and volatilome. Frontiers in Plant Science 9:1611.

Torres R, Montes EJ, Pérez OA, Andrade RD (2013). Relación del color y del estado de madurez con las propiedades fisicoquímicas de frutas tropicales. [Relationship of color and maturity stage with the physicochemical properties of tropical fruits]. Información Tecnológica 24(3):51-56.

Turan M, Yıldırım E, Ekinci M, Argin S (2021). Effect of biostimulants on yield and quality of cherry tomatoes grown in fertile and stressed soils. Hortscience 56(4):414-423

Tripathi VK, Kumar N, Shukla HS, Mishra AN (2016). Influence of Azotobacter, Azospirillum and PSB on growth, yield and quality of strawberry cv. Chandler. Progressive Horticulture 48(1):49-53.

Ullah I, Sajid M, Shah ST, Khan S, Iqbal Z, Wahid F, Hassan E, Ahmad SH, Khan R (2017). Influence of humic acid on growth and yield of strawberry cv. Chandler. Pure Applied Biology 6(4):1171-1176.

Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4(5):12.

Veobides H, Guridi F, Vázquez V (2018). Las sustancias húmicas como bioestimulantes de plantas bajo condiciones de estrés ambiental. [Humic substances as plants biostimulants under environmental stress conditions]. Cultivos Tropicales 39(4):102-109.

Wills R, McGlasson B, Graham D, Joyce D (1998). Postharvest: an introduction to the physiology and handling of fruit, vegetables and ornamentals. CAB International, New York, pp 262.

Xudan X (1986). The effect of foliar application of fulvic acid on water use, nutrient uptake and yield in wheat. Australian Journal of Agricultural Research 37(4):343.

Yin CY, Berninger F, Li CY (2006). Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica 44:62-68.

Yu Z, Dahlgren RA (2000). Evaluation of methods for measuring polyphenols in conifer foliage. Chemical Ecology 26:2119-2140.

Zhang P, Zhang H, Wu G, Chen X, Gruda N, Li X, Dong J, Duan Z (2021). Dose-dependent application of straw-derived fulvic acid on yield and quality of tomato plants grown in a greenhouse. Frontiers in Plant Science 12:736613.



How to Cite

MARTÍNEZ-DE LA CRUZ, S., GONZÁLEZ-FUENTES, J. A., ROBLEDO-OLIVO, A., MENDOZA-VILLARREAL, R., HERNÁNDEZ-PÉREZ, A., DÁVILA-MEDINA, M. D., & ALVARADO-CAMARILLO, D. (2022). Humic substances and rhizobacteria enhance the yield, physiology and quality of strawberries. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12578.



Research Articles
DOI: 10.15835/nbha50112578