Impact of the foliar application of potassium nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans

Authors

  • Ana Karen MÁRQUEZ-PRIETO Universidad Autónoma de Chihuahua (MX)
  • Alejandro PALACIO-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo (MX)
  • Esteban SÁNCHEZ Food and Development Research Center A.C. Delicias Unit (MX)
  • Bertha Catalina MACIAS-LÓPEZ Universidad Autónoma de Chihuahua (MX)
  • Sandra PÉREZ-ÁLVAREZ Universidad Autónoma de Chihuahua (MX)
  • Octavio VILLALOBOS-CANO Universidad Autónoma de Chihuahua (MX)
  • Pablo PRECIADO-RANGEL Instituto Tecnológico de Torreón (MX)

DOI:

https://doi.org/10.15835/nbha50112569

Keywords:

Photosynthetic activity, nanoparticles; Phaseolus vulgaris L.; nanotechnology

Abstract

The agricultural areas of the world face problems that create difficulties when producing food and the excessive use of fertilizers is generating a negative environmental impact. An alternative that appears as a solution to this problem is the use of nanofertilizers. Within nanofertilizers an area of opportunity is the application of macronutrients, which report an increase in absorption efficiency of 19% compared to conventional fertilizers. Potassium (K) is one of the three macronutrients most used in agriculture and its deficiency affects key processes in plant development, limiting crop production. However, the number of publications where K is used as a nanofertilizer is limited, despite this, products in this form are already on the market. Therefore, the aim of this research work was to study the effect of the foliar application of K nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans cv. ‘Strike’. K was applied in the form of a nanofertilizer in doses of 0, 50, 100 and 200 ppm. The biomass accumulation, yield, nitrate reductase enzyme activity, photosynthetic activity and photosynthetic pigments were evaluated. The dose of 100 ppm of K nanofertilizer obtained a higher accumulation of biomass, nitrate reductase activity, photosynthetic activity, SPAD values and total chlorophyll content. While the 200-ppm dose obtained a higher increase in yield. The results obtained suggest that the application of K nanofertilizers benefits the physiological development of plants. However, more studies are required to compare the application of nanofertilizers with traditional fertilizers.

References

Abdel-Aziz HMM, Hasaneen MNAG, Omer AM (2018). Foliar application of nano chitosan NPK fertilizer improves the yield of wheat plants grown on two different soils. Egyptian Journal of Experimental Biology (Botany) 14(1):63-72. https://doi.org/10.5455/egyjebb. 20180106032701

Adhikari B, Dhungana SK, Kim ID, Shin DH (2020). Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. Journal of the Saudi Society of Agricultural Sciences 19(4):261-269. https://doi.org/10.1016/j.jssas.2019.02.001

Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, ... Iqbal MA (2018). Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review. Journal of Plant Nutrition 41(13):1734-1743. https://doi.org/10.1080/01904167.2018.1459688

Al-Fahdawi AJJ, Allawi MM (2019). Impact of biofertilizers and nano potassium on growth and yield of eggplant (Solanum melongena L.). Plant Archives 19(2):1809-1815. http://plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/314%20(1809-1815).pdf

Asgari S, Moradi H, Afshari H (2018). Evaluation of some physiological and morphological characteristics of narcissus tazatta under BA treatment and nano-potassium fertilizer. Journal of Chemical Health Risks 4(4). https://dx.doi.org/10.22034/jchr.2018.544085

Attia ANE, El-Hendi MH, Hamoda SAF, El-Sayed SO (2016). Effect of nanofertilizer (lithovit) and potassium on growth, fruiting and yield of Egyptian cotton under different planting dates. Journal of Plant Production 7(9):935-942. https://dx.doi.org/10.21608/jpp.2016.46810

Bramley PM (2013). Carotenoid biosynthesis and chlorophyll degradation. In: Seymour G, Tucker GA, Poole M Giovannoni J (Eds). The Molecular Biology and Biochemistry of Fruit Ripening. John Wiley & Sons, Inc. pp 75-116. https://doi.org/10.1002/9781118593714.ch4

Casierra-Posada F, Peña-Olmos JE, Ulrichs C (2011). Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) afectadas por la calidad de la luz: Implicaciones agronómicas. [Growth and photochemical efficiency of photosystem II in strawberry plants (Fragaria sp.) Affected by the quality of light: Agronomic implications]. Revista U.D.C.A Actualidad & Divulgación Científica 14(2):45-53. https://doi.org/10.31910/rudca.v14.n2.2011.774

Chhipa H (2017). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15(1):15-22. https://doi.org/10.1007/s10311-016-0600-4

Cunha ARD, Katz I, Sousa ADP Martinez-Uribe RA (2015). Índice SPAD en el crecimiento y desarrollo de plantas de Lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido [SPAD index according growth and development of lisianthus plants in relation to different nitrogen levels under protected environment]. Idesia (Arica) 33(2):97-105. http://hdl.handle.net/11449/167850

El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017). Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. American Journal of Plant Sciences 8(8):1751-1773. https://doi.org/10.4236/ajps.2017.88120

Farnia A, Ghorbani A (2014). Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of red bean (Phaseolus vulgaris L.). International Journal of Biosciences 5(12):296-303. http://dx.doi.org/10.12692/ijb/5.12.296-303

Feregrino-Perez AA, Magaña-López E, Guzmán C, Esquivel K (2018). A general overview of the benefits and possible negative effects of the nanotechnology in horticulture. Scientia Horticulturae 238:126-137. https://doi.org/10.1016/j.scienta.2018.03.060

Hasaneen MNAG, Abdel-aziz HMM, Omer AM (2016). Effect of foliar application of engineered nanomaterials: carbon nanotubes NPK and chitosan nanoparticles NPK fertilizer on the growth of French bean plant. Biochemistry and Biotechnology Research 4(4):68-76. http://www.netjournals.org/pdf/BBR/2016/4/16-021.pdf

Hasanuzzaman M, Bhuyan MHM, Nahar K, Hossain M, Mahmud JA, Hossen M, Fujita M (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8(3):31. https://doi.org/10.3390/agronomy8030031

HelgiAnalytics (2021). Bean Consumption Per Capita. Retrieved 11 May 2021, from https://www.helgilibrary.com/indicators/bean-consumption-per-capita/

Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A (2012). Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia pumila benth) exposed to potassium fertilization under greenhouse conditions. International Journal of Molecular Sciences 13(11):15321-15342; https://doi.org/10.3390/ijms131115321

Jabeen N, Ahmad R (2011). Foliar application of potassium nitrate affects the growth and nitrate reductase activity in sunflower and safflower leaves under salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):172-178. https://doi.org/10.15835/nbha3926064

Kah M, Kookana RS, Gogos A, Bucheli TD (2018). A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology 13(8):677-684. https://doi.org/10.1038/s41565-018-0131-1

Lara-Flores M (2015). El cultivo del frijol en México [The cultivation of beans in Mexico]. Revista Digital Universitaria UNAM 16(2):9.

Lavres-Junior J, Santos-Junior JD, Monteiro FA (2010). Nitrate reductase activity and spad readings in leaf tissues of guinea grass submitted to nitrogen and potassium rates. Revista Brasileira de Ciência do Solo 34(3):801-809.

Liu R, Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment 514:131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104

Maldonado JM (2013). Asimulación del nitrógeno y del azufre [Assimilation of nitrogen and sulfur]. In: Talón M (Ed). Fundamentos de Fisiología Vegetal. McGraw-Hill Interamericana, Madrid, España pp 287-304.

Marschner H (2011). Marschner's mineral nutrition of higher plants. Academic Press, pp 178-189.

Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018). Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Applied Ecology and Environmental Research 16(2):1883-1897. https://doi.org/10.15666/aeer/1602_18831897

Naderi MR, Abedi A (2012). Application of nanotechnology in agriculture and refinement of environmental pollutants. Journal of Nanotechnology 11(1):18-26.

Raliya R, Saharan V, Dimkpa C, Biswas P (2017). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of agricultural and food chemistry 66(26):6487-6503. https://doi.org/10.1021/acs.jafc.7b02178

Ramírez-Jaspeado R, Palacios-Rojas N, Nutti M, Pérez S (2020). Estados potenciales en México para la producción y consumo de frijol biofortificado con hierro y zinc [Potential states in Mexico for the production and consumption of beans biofortified with iron and zinc]. Revista Fitotecnia Mexicana 43(1):11-23.

Salinas-Ramírez N, Escalante-Estrada JA, Rodríguez-González M, Sosa-Montes E (2012). Rendimiento y calidad nutrimental de frijol ejotero en dos ambientes [Yield and nutritional quality of green beans in two environments]. Revista Fitotecnia Mexicana 35(4):317-323.

Subbaiah LV, Prasad TNVKV, Krishna TG, Sudhakar P, Reddy BR, Pradeep T (2016). Novel effects of nanoparticulate delivery of zinc on growth, productivity, and zinc biofortification in maize (Zea mays L.). Journal of Agricultural and Food Chemistry 64(19):3778-3788. https://doi.org/10.1021/acs.jafc.6b00838

Wang Y, Wu WH (2013). Potassium transport and signaling in higher plants. Annual Review of Plant Biology 64:451-476. https://doi.org/10.1146/annurev-arplant-050312-120153

Zahedifar M, Najafian S (2017). Ocimum basilicum L. growth and nutrient status as influenced by biochar and potassium-nano chelate fertilizers. Archives of Agronomy and Soil Science 63(5):638-650. https://doi.org/10.1080/03650340.2016.1233323

Zahoor R, Dong H, Abid M, Zhao W, Wang Y, Zhou Z (2017). Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environmental and Experimental Botany 137:73-83. https://doi.org/10.1016/j.envexpbot.2017.02.002

Published

2022-02-25

How to Cite

MÁRQUEZ-PRIETO, A. K., PALACIO-MÁRQUEZ, A., SÁNCHEZ, E., MACIAS-LÓPEZ, B. C., PÉREZ-ÁLVAREZ, S., VILLALOBOS-CANO, O., & PRECIADO-RANGEL, P. (2022). Impact of the foliar application of potassium nanofertilizer on biomass, yield, nitrogen assimilation and photosynthetic activity in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1), 12569. https://doi.org/10.15835/nbha50112569

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha50112569

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

You may also start an advanced similarity search for this article.