The effectiveness of Rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring


  • Wenli SUN Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081 (CN)
  • Mohamad H. SHAHRAJABIAN Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081 (CN)



catch crops, crop nutrition, cover crops, green manure, Rhizobium, soil fertility


The ability of adaptation of Rhizobia in diverse environment namely, soil, rhizosphere and grown within legume roots may lead to nitrogen fixation, in a complicated process which contain a coordinated exchange of signal between plants and the symbionts. Green manures, cash and cover crops have significant role in soil fertility. Green manuring techniques also can decrease biomass burning known as main source of air pollutant in the atmosphere. Catch crops have positive effects on both physical and chemical properties of soil, subsequent crop yield, decrease nitrogen leaching into the ground water, decrease soil erosion, and decrease nitrogen losses in cropping systems. Cover crops are those crops which cover the ground and protect loss of plant nutrients, the soil from erosion, decrease rate of soil moisture by evaporation, lower ground temperature and improve weed control and nutrient recycling. Rhizobia produce Nod factors during the early development of nodules upon perception of flavonoid molecules secreted by legume roots, and Nod factor’s structure dependents on species, chemical, substitutions added which may influence legume specificity. The benefic effects of rhizobia may depend on rhizobium strain, the genotype of the legume, management practices and bio-physical environment. Rhizobium can directly promote both plant growth and plant health, and modulating root architecture and growth via the release of plant phytohormones. In this manuscript, we want to review the most important advantages and benefits of green manures, catch and cover crops with considering the positive effects of rhizobium on soil fertility and sustainable agricultural production.


Metrics Loading ...


Abd-Alla MH, El-Enany A-WE, Nafady NA, Khalaf DM, Morsy FM (2014). Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research 169(1):49-58. DOI:

Abdollahi M, Soleymani A, Shahrajabian MH (2018). Evaluation of yield and some of physiological indices of potato cultivars in relation to chemical, biologic and manure fertilizers. Cercetari Agronomice in Moldova 51(2):53-66. DOI:

Adusumilli N, Wang H, Dodla A, Deliberto M (2020). Estimating risk premiums for adopting no-till and cover crops management practices in soybean production system using stochastic efficiency approach. Agricultural Systems 178:102744. DOI:

Albera G, Wolde-Meskel E, Bakken LR (2014). Unexpected high decomposition of legume residues in dry season soils from tropical coffee plantations and crop lands. Agronomy for Sustainable Development 34:667-676. DOI:

Almagro M, Martinez-Mena M (2014). Litter decomposition rates of green manure as affected by soil erosion, transport and deposition processes, and the implications for the soil carbon balance of a rainfed olive grove under a dry Mediterranean climate. Agriculture, Ecosystems and Environment 196:167-177. DOI:

Alonso-Ayuseo M, Gabriel JL, Garcia-Gonzales I, Del Monte JP, Quemada M (2018). Weed density and diversity in a long-term cover crop experiment background. Crop Protection 112:103-111. DOI:

Alvarado MJ, Lonsdale CR, Yokelson RJ, Akagi SK, Coe H, Craven JS, … Wold CE (2015). Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral. Atmospheric Chemistry and Physics 15:6667-6688. DOI:

Alvarez R, Steinbach HS, De Paepe JL (2010). Cover crop effects on soils and subsequent crop in the pampas: A meta-analysis. Soil and Tillage Research 170:53-65. DOI:

Andreae MO, Merlet P (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15:955-966. DOI:

Arbuckle JG, Toesch-McNally G (2015). Cover crop adoption in Iowa: the role of perceived practice characteristics. Journal of Soil and Water Conservation 70(6):418-429. DOI:

Argaw A, Mnalku A (2017). Symbiotic effectiveness of Rhizobium leguminosarumbv. vicieae isolated from major highland pulses on field pea (Pisum sativum L.) in soil with abundant rhizobial population. Annals of Agrarian Science 15(3):410-419. DOI:

Arlauskiene A, Maiksteniene S, Sarunaite L, Kadziuliene Z, Deveikyte I, Zekaite V, Censuleviciene R (2011). Competitiveness and productivity of organically grown pea and spring cereal intercrops. Zemdirbyste 98:339-348. DOI:

Aronsson H, Torstensson G (1998). Measured and simulated availability and leaching of nitrogen associated with frequent use of catch crops. Soil and Use Management 14:6-13. DOI:

Askegaard M, Olesen J, Kristensen K (2005). Nitrate leaching from organic arable crop rotations: effects of location manure and catch crop. Soil Use and Management 21:181-188. DOI:

Askegaard M, Olesen JE, Rasmussen IA, Kristensen K (2011). Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agriculture, Ecosystems and Environment 142(3):149-160. DOI:

Aulakh MS, Khera TS, Doran JW, Bronson KF (2001). Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biology and Fertility Soils 34:375-389. DOI:

Awasthi A, Singh N, Mittal S, Gupta PK, Agarwal R (2010). Effects of agriculture crop residue burning on children and young on PFTs in North West India. Science of the Total Environment 408:4440-4445. DOI:

Awasthi A, Agarwal R, Mittal SK, Singh N, Singh K, Gupta PK (2011). Study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India. Journal of Environmental Monitoring 13(4):1073-1081. DOI:

Azhar R, Zeeshan M, Fatima K (2019). Crop residue open field burning in Pakistan; multi-year high spatial resolution emission inventory for 2000-2014. Atmospheric Environment 208:20-33. DOI:

Bai J-S, Cao W-D, Xiong J, Zing N-H, Gao S-J, Shimizu K (2015). Integrated application of February Orchid (Orychophragmus violaceus) as green manure with chemical fertilizer for improving grain yield and reducing nitrogen losses in spring maize system in northern China. Journal of Integrative Agriculture 14(12):2490-2499. DOI:

Bailey KL, Lazarovits G (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and Tillage Research 72:169-180. DOI:

Balota EL, Calegari A, Nakatani AS, Coyne MS (2014). Benefits of winter cover crops and no-tillage for microbial parameters in a Brazilian Oxisol: a long-term study. Agriculture, Ecosystems and Environment 197:31-40. DOI:

Barnes PW, Throop HL, Hewins DB, Abbene ML, Archer SR (2012). Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter. Ecosystems 15:311-321. DOI:

Basore NS, Best LB, Wooley JB (1986). Bird nesting in Iowa no-tillage and tilled cropland. Journal of Wildlife Management 50:19-28. DOI:

Batista TMDV, Neto FB, Porto VCN, Junior APB, Silva IN, Silva ML, Lima JSSD, Oliveira D (2019). Bio-agro-economic returns from carrot and salad rocket as intercrops using hairy wood rose as green manure in a semi-arid region of Brazil. Ecological Indicators 67:458-465. DOI:

Benincasa P, Tosti G, Tei F, Guiducci M (2010). Actual N availability from winter catch crops used for green manuring in maize cultivation. Journal of Sustainable Agriculture 34:705-723. DOI:

Bergkvist G, Stenberg M, Wetterlind J, Bath B, Elfstrand S (2011). Clover cover crops under-sown in winter wheat increase yield of subsequent spring barley-effect of N dose and companion grass. Field Crops Research 120:292-298. DOI:

Bergtold JS, Ramsey S, Maddy L, Williams JR (2017). A review of economic considerations for cover crops as a conservation practice. Renewable Agriculture and Food Systems 1-15. DOI:

Berhe AA (2012). Decomposition of organic substrates at eroding vs. depositional landform positions. Plant and Soil 350:261-280. DOI:

Berntsen J, Olsen JE, Petersen BM, Hansen EM (2006). Long-term fate of nitrogen uptake in catch crops. European Journal of Agronomy 25:383-390. DOI:

Bjarnholt N, Laegdsmand M, Hansen HCB, Jacobsen OH, Moller BL (2008). Leaching of cyanogenic glucosides and cyanide from white clover green manure. Chemosphere 72:897-904. DOI:

Blackshaw RE (2008). Agronomic benefits of cereal cover crops in dry bean production systems in western Canada. Crop Protection 27:208-214. DOI:

Blanco-Canqui H, Lal R (2009). Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Sciences 28:139-163. DOI:

Bockus WW, Shroyer JP (1998). The impact of reduced tillage on soilborne plant pathogens. Annual Review of Phytopathology 36:485-500. DOI:

Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, … Zender CS (2013). Bounding the role of black carbon in the climate system: a scientific assessment. Journal of Geophysical Research: Atmospheres 118:5380-5552. DOI:

Bonder G, Loiskandl W, Kaul HP (2007). Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agriculture Water Management 93:85-98. DOI:

Botterberg H, Masiunas J, Eastman C, Eastburn DM (1997). The impact of rye cover crops on weeds, insects, and diseases in snap bean cropping systems. Journal of Sustainable Agriculture 9:131-155. DOI:

Bowers C, Toews M, Liu Y, Schmidt JM (2020). Cover crops improve early season natural enemy recruitment and pest management in cotton production. Biological Control 141:104149. DOI:

Brainard D, Henshaw B, Snapp S (2012). Hairy vetch varieties and Bi-Cultures influence cover crop services in strip-tilled sweet corn. Agronomy Journal 104:629-638. DOI:

Brennan EB, Acosta-Martinez V (2015). Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biology and Biochemistry 109:188-204. DOI:

Brussaard L, Behan-Pellertier V, Bignell D, Brown V, Didden W, Folgarait P, … Virginia R (1997). Biodiversity and ecosystem functioning in soil. Ambio 26:563-570. DOI:

Brust J, Claupein W, Gerhards R (2014). Growth and weed suppression ability of common and new cover crops in Germany. Crop Protection 63:1-8. DOI:

Bukovsky-Reyes S, Isaac ME, Blesh J (2019). Effects of intercropping and soil properties on root functional traits of cover crops. Agriculture, Ecosystems and Environment 285:106614. DOI:

Burgio G, Marchesini E, Reggiani M, Montepaone G, Schiatti P, Sommaggio D (2016). Habitat management of organic vineyard in Northern Italy: the role of cover plants management on arthropod functional biodiversity. Bulletin of entomological Research 106:759-768. DOI:

Burns RG (1978). Enzyme activity in soil: some theoretical and practical considerations. In: Burns, R. G. (Ed.), Soil Enzymes. Academic Press, New York, NY, pp. 295-340. DOI:

Buysens C, Cesar V, Ferrais F, Boulois HDD, Declerck S (2016). Inoculation of Medicago sativa cover crop with Rhizophagusirregularis and Trichoderma harzianum increases the yield of subsequently-grown potato under low nutrient conditions. Applied Soil Ecology 105:137-143. DOI:

Caban JR, Kuppusamy S, Kim JH, Yoon Y-E, Kim SY, Lee YB (2018). Green manure amendment enhances microbial activity and diversity in antibiotic-contaminated soil. Applied Soil Ecology 129:72-76. DOI:

Calderon FJ, Nielsen D, Acosta-Martinez V, Vigil MF, Lyon D (2016). Cover crop and irrigation effects on soil microbial communities and enzymes in semi-arid agroecosystems of the central Great Plains of North America. Pedosphere 26:192-205. DOI:

Campiglia E, Caporali F, Radicetti E, Mancinelli R (2010). Effect of cover crops and mulches on weed control and nitrogen fertilization in tomato (Lycopersicon esculentum Mill). Crop Protection 29:354-363. DOI:

Campillo R,Urquiaga S, Pino I, Montenegro A (2003). Estimacion de la fijacionbiologica de nitrogenoenleguminosasforrajerasmediante la metodologia del 15N. Agric. Tec. (Chile). 63:169-179. DOI:

Caporali F (2004). Agriculture and Health: The Challenge of Organic Farming. Editeam, Cento (FE), pp 252. DOI:

Cardoso P, Corticeiro S, Freitas R, Figueira E (2018). Different efficiencies of the same mechanisms result in distinct Cd tolerance within Rhizobium. Ecotoxicology and Environmental Safety 150:260-269. DOI:

Carpio AJ, Castro J, Mingo V, Tortosa FS (2017). Herbaceous cover enhances the squamate reptile community in woody crops. Journal for Nature Conservation 37:31-38. DOI:

Carvalho JLN, Nogueirol RC, Menandro LMC, Bordonal R, De O, Borges CD, Cantarella H, Franco HCJJ (2017). Agronomic and environmental implications of sugarcane straw removal: a major review. Gcb Bioenergy 9:1181-1195. DOI:

Castro-Caro JC, Barrio IC, Tortosa FS (2014). Is the effect of farming practices on songbird communities landscape dependent? A case study of olive groves in southern Spain. Journal of Ornithology 155:357-365. DOI:

Castro-Caro JC, Barrio IC, Tortosa FS (2015). Effects of hedges and herbaceous cover on passerine communities in Mediterranean olive groves. Acta Ornithologica 50:180-192. DOI:

Cates AM, Ruark MD, Grandy AS, Jackson RD (2019). Small soil C cycle responses to three years of cover crops in maize cropping systems. Agriculture, Ecosystems and Environment 286:106649. DOI:

Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46:437-444. DOI:

Chehab H, Tekaya M, Gouiaa M, Mahjoub Z, Laamari S, Sfina H, … Mechri B (2018). The use of legume and grass cover crops induced changes in ion accumulation, growth and physiological performance of young olive trees irrigated with high-salinity water. Scientia Horticulturae 232:170-174. DOI:

Chen G, Weil RR (2010). Penetration of cover crop roots through compacted soils. Plant and Soil 331(1-2):31-43. DOI:

Chen G, Weil RR (2011). Root growth and yield of maize as affected by soil compaction and cover crops. Soil and Tillage Research 117:17-27. DOI:

Chen S, Zheng X, Wang D, Chen L, Xu C, Zhang X (2012). Effect of long-term paddy-upland yearly rotations on rice (Oryza sativa) yield, soil properties, and bacteria community. The Scientific World Journal 279641. DOI:

Chen Y, Xie SD (2014). Characteristics and formation mechanism of a heavy air pollution episode caused by biomass burning in Chengdu, Southwest China. Science of the Total Environment 473-474:507-517. DOI:

Chen X, Cui Z, Fan M, Vitousek P, Zhao M, Ma W, … Deng X (2014). Producing more grain with lower environmental costs. Nature 514:486-489. DOI:

Chen C-P, Cheng C-H, Huang Y-H, Chen C-T, Lai C-M, Menyailo OV, … Yang Y-W (2014). Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma 232-234:581-588. DOI:

Chen H, Liang Q, Gong Y, Kuzyakov Y, Fan M, Plante AF (2019). Reduced tillage and increased residue retention increase enzyme activity and carbon and nitrogen concentrations in soil particle size fractions in a long-term field experiment on Loess Plateau in China. Soil and Tillage Research 194:104296. DOI:

Chen Y, Hu N, Zhang Q, Lou Y, Li Z, Tang Z, Kuzyakov Y, Wang Y (2019). Impacts of green manure amendment on detritus micro-food web in a double-rice cropping system. Applied Soil Ecology 138:32-36. DOI:

Cheng Z, Wang S, Fu X, Watson JG, Jiang J, Fu Q, … Hao J (2014). Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011. Atmospheric Chemistry and Physics 14:4573-4585. DOI:

Chitwood DJ (2002). Phytochemical based strategies for nematode control. Annual Review of Phytopathology 40:221-229. DOI:

Chuang H-C, Sun J, Ni H, Tian J, Lui KH, Han Y, … Ho K-F (2019). Characterization of the chemical components and bioreactivity of fine particulate matter produced during crop-residue burning in China. Environmental Pollution 245:226-234. DOI:

Cicek H, Thiessen-Martens JR, Bamford K, Entz MH (2014). Effects of grazing two green manure crop types in organic farming systems: N supply and productivity of following grain crops. Agriculture, Ecosystems and Environment 190:27-36. DOI:

Cicek H, Thiessen Martens JR, Bamford KC, Entz MH (2015). Late-season catch crops reduce nitrate leaching risk after grazed green manures but release N slower than wheat demand. Agriculture, Ecosystems and Environment 202:31-41. DOI:

Clark AJ, Decker AM, Meisinger JJ (1994). Seeding rate and kill date effects on hairy vetch-cereal rye cover crop mixtures for corn production. Agronomy Journal 86:1065-1070. DOI:

Clark AJ, Meisinger JJ, Decker AM, Mulford FR (2007a). Effects of a grass-selective herbicide in a vetch-rye cover crop system on grain yield and soil moisture. Agronomy Journal 99:43-48. DOI:

Clark AJ, Meisinger JJ, Decker AM, Mulford FR (2007b). Effects of a grass-selective herbicide in a vetch-rye cover crop system on nitrogen management. Agronomy Journal 99:36-42.

Collange BM, Navarrete G, Peyre T, Mateille M, Tchamitchian M (2011). Root-knot nematode (Meloidogyne) management in vegetable crop production: the challenge of an agronomic system analysis. Crop Protection 30:1251-1262. DOI:

Constantin J, Mary B, Laurent F,Aubrion G, Fontaine A, Kerveillant P, Beaudoin N (2010). Effects of catch crops, no tillage and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agriculture, Ecosystems and Environment 135:268-278. DOI:

Couedel A, Alletto L, Tribouillois H, Justes E (2018). Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agriculture, Ecosystems and Environment 254:50-59. DOI:

Creamer NG, Bennett MA, Stinner BR (1997). Evaluation of cover crop mixtures for use in vegetable production systems. HortScience 32:866-870. DOI:

Crews TE, Peoples MB (2005). Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutrient Cycling in Agroecosystems 72:101-120. DOI:

Curto G, Dallavalle E, Santi R, Casadei N, D,Avino L, Lazzeri L (2015). The potential of Crotalaria juncea L. as a summer green manure crop in comparison to Brassicaceae catch crops for management of Meloidogyne incognita in the Mediterranean area. European Journal of Plant Pathology 142:829-841. DOI:

Dabin Z, Pengwei Y, Na Z, Changwei Y, Weidong C, Yajun G (2016). Contribution of green manure legumes to nitrogen dynamics in traditional winter wheat cropping system in the Loess Plateau of China. European Journal of Agronomy 72:47-55. DOI:

Dabney SM (1998). Cover crop impacts on watershed hydrology. Journal of Soil and Water Conservation 53: 207-213. DOI:

Dai X, Zhou W, Liu G, Liang G, He P, Liu Z (2019). Soil C/N and pH together as a comprehensive indicator for evaluating the effects of organic substitution management in subtropical paddy fields after application of high-quality amendments. Geoderman 337:1116-1125. DOI:

Dalal RC, Allen DE, Wang WJ, Reeves S, Gibson I (2011). Organic carbon and total nitrogen stocks in a Vertisol following 40 years of no-tillage, crop residue retention and nitrogen fertilization. Soil & Tillage Research 112:133-139. DOI:

Daryanto S, Fu B, Wang L, Jacinthe P-A, Zhao W (2018). Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews 185:357-373. DOI:

Daryanto S, Jacinthe P-A, Fun B, Zhao W, Want L (2019). Valuing the ecosystem services of cover crops: barriers and pathways forward. Agriculture, Ecosystems and Environment 270-271:76-78. DOI:

Davis BW, Mirsky SB, Needelman BA, Cavigelli MA, Yarwood SA (2019). Nitrous oxide emissions increase exponentially with organic N rate from cover crops and applied poultry litter. Agriculture, Ecosystems and Environment 272:165-174. DOI:

De Figueiredo EB, Panosso AR, Reicosky DC, La Scala N (2015). Short-term CO2-C emissions from soil prior to sugarcane (Saccharum spp.) replanting in southern Brazil. GcB Bioenergy 7:316-327. DOI:

De Notaris C, Rasmussen J, Sorensen P, Olesen JE (2018). Nitrogen leaching: a crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agriculture, Ecosystems and Environment 255:1-11. DOI:

De Notaris C, Rasmussen J, Sorensen P, Melander B, Olesen JE (2019). Manipulating cover crop growth by adjusting sowing time and cereal inter-row spacing to enhance residual nitrogen effects. Field Crops Research 234:15-25. DOI:

De Oliveira IN, De Souza ZM, Lovera LH, Farhate CVV, Lima EDS, Esteban DAA, Fracarolli JA (2019). Least limiting water range as influenced by tillage and cover crop. Agricultural Water Management 225:105777. DOI:

Decker AM, Clark A, Meisinger JJ, Mulford FR, McIntosh MS (1994). Legume cover crop contribution to no-tillage corn production. Agronomy Journal 86:126-135. DOI:

Delgado JA, Shaffer MJ, Brodahl MK (1998). New NLEAP for shallow and deep rooted crop rotations. Journal of Soil and Water Conservation 53:338-340. DOI:

Delpuech X, Metay A (2018). Adapting cover crop soil coverage to soil depth to limit competition for water in a Mediterranean vineyard. European Journal of Agronomy 97:60-69. DOI:

Dennis A, Fraser M, Anderson S, Allen D (2002). Air pollutant emissions associated with forest, grassland, and agricultural burning in Texas. Atmospheric Environment 36:3779-3792. DOI:

Derpsch R, Franzluebbers AJ, Duiker SW, Reicosky DC, Koeller K, Friedrich Y, … Weiss M (2014). Why do we need to standardize no-tillage research? Soil and Tillage Research 137:16-22. DOI:

Diacono M, Montemurro F (2010). Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development 30(2):401-422. DOI:

Djian-Caporalino C, Bourdy G, Cayrol JC (2005). Nematicidal and nematode-resistant plants. In: Regnault-Roger C, Philogene Jr. B, Vincent C (Eds). Biopesticides of Plant Origin. Lavoisier Publishing Inc, UK, Intercept Ltd, and USA, pp 173-224. DOI:

Djian-Caporalino C, Mateille T, Bailly-Bechet M, Marteu N, Fazari A, Bautheac P, … Castagnone-Sereno P (2019). Evaluating sorghum as green manure against root-knot nematodes. Crop Protection 122:142-150. DOI:

Dong J, Wu X, Xu C, Zhang Q, Jin X, Din J, Liu S, Wang Y (2018). Evaluation of lucerne cover crop for improving biological control of Lyonetia clerkella (Lepidoptera: Lyonetiidae) by means of augmenting its predators in peach orchards. Great Lakes Entomologist 38:5. DOI:

Dorward P, Galpin M, Shepherd D (2003). Participatory farm management methods for assessing the suitability of potential innovations. A case study on green manuring options for tomato producers in Ghana. Agricultural Systems 75:97-117. DOI:

Duebbert HF, Kantrud HA (1987). Use of no-till winter wheat by nesting ducks in North Dakota. Journal of Soil and Water Conservation 42:50-53. DOI:

Eichler-Lobermann B, Kohne S, Kowalski B, Schnug E (2008). Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization. Journal of Plant Nutrition 31:659-676. DOI:

Elfstrand S, Bath B, Martensson A (2007). Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Applied Soil Ecology 36:70-82. DOI:

Elhakeem A, van der Werf W, Ajal J, Luca D, Claus S, Vico RA, Bastiaans L (2019). Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration. Agriculture, Ecosystems and Environment 285:106627. DOI:

Ellis KE, Barbercheck ME (2015). Management of overwintering cover crops influences floral resources and visitation by native bees. Environmental Entomology 44:999-1010. DOI:

Essah SYC, Delgado JA, Dillon M, Sparks R (2012). Cover crops can improve potato tuber yield and quality. HortTecnology 22:185-190. DOI:

Evans R, Lawley Y, Entz MH (2016). Fall-seeded cereal cover crops differ in ability to facilitate low-till organic bean (Phaseolus vulgaris) production in a short-season growing environment. Field Crops Research 191:91-100. DOI:

Fan F, Zhang F, Song Y, Sun J, Bao X, Guo T, Li L (2006). Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil 283:275-286. DOI:

Fang L, Ju W, Yang C, Jin X, Liu D, Li M, Yu J, Zhao W, Zhang C (2020). Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils. Environmental Pollution. 265(Part A): 114744. DOI:

Farahbakhshazad N, Dinnes DL, Li C, Jaynes DB, Salas W (2008). Modeling biogeochemical impacts of alternative management practices for a row-crop field in Iowa. Agriculture, Ecosystem and Environment 123:30-48. DOI:

Ferraz S, de Freitas LG (2004). Use of antagonistic plants and natural products. In: Chen ZX, Chen SY, Dickson DW (Eds). Nematology Advances and Perspectives. Tsinghua University Press, Beijing, pp 931-977. DOI:

Fiener P, Auerswalk K (2003). Concept and effects of a multi-purpose grassed waterway. Soil Use and Management 19:65-72. DOI:

Finney DM, White CM, Kaye JP (2016). Biomass production and carbon: nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal 108:39-52. DOI:

Fiorini A, Maris SC, Abalos D, Amaducci S, Tabaglio V (2020). Combining no-till with rye (Secale cereal L.) cover crop mitigates nitrous oxide emissions without decreasing yield. Soil and Tillage Research 196:104442. DOI:

Flickinger EL, Pendleton GW (1994). Bird use of agricultural fields under reduced and conventional tillage in the Texas panhandle. Wildlife Society Bulletin 22:34-42. DOI:

Flood HE, Entz MH (2009). Effects of wheat, triticale and rye plant extracts on germination on navy bean (Phaselous vulgaris) and selected weed species. Canadian Journal of Plant Sciences 89:999-1002. DOI:

Flores-Felix JD, Sanchez-Juanes F, Garcia-Fraile P, Valverde A, Mateos PF, Gonzalez-Buitrago JMG, Rivas R (2019). Phaseolus vulgaris is nodulated by the symbiovarviciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Systematic and Applied Microbiology. 42:240-247. DOI:

Fosu M,Kuhne RF, Vlek PLG (2007). Mineralization and microbial biomass dynamics during decomposition of four leguminous residues. Journal of Biological Sciences 7:632-637. DOI:

Frey H (2016). Analyse des pratiques d,enherbement des viticulteurs et formalization des regles de decision utilisees pour le pilotage. Enquetes dans I,Aude, le Gard, I,Herault et les Pyrenees Orientales. Centre International d,Etudes Superieures Agronomiques. DOI:

Gabriel JL, Munoz-Carpena R, Quemada M (2012). The role of cover crops in irrigated systems: water balance, nitrate leaching and soil mineral nitrogen accumulation. Agriculture, Ecosystems and Environment 155:50-61. DOI:

Gabriel JL, Vanclooster M, Quemada M (2014). Integrating water, nitrogen and salinity in sustainable irrigated systems: cover crops versus fallow. Journal of Irrigated and Drainage Engineering140:A4014002. DOI:

Gao JS, Xu MG, Dong CH, Huang J, Cao WD, Zing XB, Wen SL, Nie J (2013). Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility. Acta Agronomica Sinica 39:343. DOI:

Gao S-J, Zhang R-G, Cao W-G, Fan Y-Y, Gao J-S, Huang J, … Kristian T-K (2015). Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China. Journal of Integrative Agriculture 14(12):2512-2520. DOI:

Gao S-J, Cao W-D, Gao J-S, Huang J, Bai J-S, Zing N-H, … Shimizu K (2017). Effects of long-term application of different green manures on ferric iron reduction in a red paddy soil in Southern China. Journal of Integrative Agriculture 16(4):959-966. DOI:

Gao S-J, Gao J-S, Cao W-D, Zou C-Q, Huang J, Bai J-S, Dou F-G (2018). Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil. Journal of Integrative Agriculture 17(8):1852-1860.

Garbeva P, van Veen, van Elsas JD (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review Phytopathology 42:243-270. DOI:

Garcia-Franco A, Albaladejo J, Almagro M, Martinez-Mena M (2015). Beneficial effects of reduced tillage and green manure on soil aggregation and stabilization of organic carbon in a Mediterranean agroecosystem. Soil and Tillage Research 153:66-75. DOI:

Gaudel M (2002). Enquete sur les pratiques d,enherbement des viticulteurs adherents a la charte Terra Vitis en Languedoc-Roussillon. (38 pp). DOI:

Gentile R, Vanlauwe B, Chivenge P, Six J (2008). Interactive effects from combining fertilizer and organic residue inputs on nitrogen transformations. Soil Biology and Biochemistry 40:2375-2384. DOI:

Ghaley BB, Hauggaard-Nielsen H, Hogh-Jensen H, Jensen ES (2005). Intercropping of wheat and pea as influenced by nitrogen fertilization. Nutrient CyCling in Agroecosystems 73:201-212. DOI:

Ghimire R, Lamichhane S, Acharya BS, Bista P, Sainju UM (2017). Tillage, crop residue and nutrient management effects on soil organic carbon in rice-based cropping systems: A review. Journal of Integrative Agriculture 16:1-15. DOI:

Gianfreda L, Ruggiero P (2006). Enzyme activities in soil. In: Nannipieri P, Smalla K (Eds). Nucleic Acids and Proteins in Soil. Springer-Verlag, Berlin, Heidelberg, pp 0-25. DOI:

Giese G, Velasco-Cruz C, Roberts L, Heitman J, Wolf TK (2014). Complete vineyard floor cover crops favorably limit grapevine vegetative growth. Scientia Horticulturae 170:256-266. DOI:

Giller KE, Beare GG, Lavelle P, Izaac AMM, Swift MJ (1997). Agricultural intensification, Soil biodiversity and agroecosystems function. In: Swift MJ (Ed). Soil biodiversity agricultural intensification and ecosystem function. Applied Soil Ecology 6:3-16. DOI:

Gomez JA, Guzman MG, Giraldez JV, Fereres E (2009). The influence of cover crops and tillage on water and sediment yield and non nutrient and organic matter losses in an olive orchard on a sandy loam soil. Soil and Tillage Research 106:137-144. DOI:

Gomez C, Mateille T, Tavoillot J, Marteu N,Fazari A, Djian-Caporalino C (2016). Utiliser le sorgho pour luttercontre les nematodes a galles. Phytoma la Défense des Végétaux 698:39-44. DOI:

Gomez JA, Campos M, Guzman G, Castillo-Llanque F,Vanwalleghem T, Lora A, Giraldez IV (2018). Soil erosion control, plant diversity, and arthropod communities under heterogenous cover crops in an olive orchard. Environmental Science and Pollution Research 25:977-989. DOI:

Graham PH, Vance CP (2003). Legumes: importance and constraints to greater utilization. Plant Physiology 131:872-877. DOI:

Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990). Decline in percentage N of C3 and C4 crops with increasing plant mass. Annals of Botany 66:425-436. DOI:

Gruter R, Costerousse B, Bertoni A, Mayer J, Thonar C, Frossard E, Schulin R, Tandy S (2017). Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages. Science of the Total Environment 599-600:1330-1343. DOI:

Guardia G, Abalos D, Garcia-Marco S, Quemada M, Alonso-Ayuso M, Cardenas LM, … Vallejo A (2016). Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences Discussions 13:1-26. DOI:

Guerra B, Steenwerth K (2012). Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: a review. American Journal of Enology and Viticulture 63:149-164. DOI:

Guilpart N, Metay A, Gary C (2014). Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. European Journal of Agronomy 54:9-20. DOI:

Guzman G, Cabezas JM, Sanchez-Cuesta R, Lora A, Bauer T, Strauss P, … Gomez AJD (2019). A field evaluation of the impact of temporary cover crops on soil properties and vegetation communities in southern Spain vineyards. Agriculture, Ecosystems and Environment 272:135-145. DOI:

Hagler GSW, Bergin MH, Salmon LG, Yu JZ, Wan ECH, Zheng M, … Schauer JJ (2006). Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China. Atmospheric Environment 40:3802-3815. DOI:

Hartkamp AD, White JW, Rossing WAH, van Ittersum MK, Bakker EJ, Rabbinge R (2004). Regional application of a cropping systems simulation model: crop residue retention in maize production systems of Jalisco, Mexico. Agricultural Systems 82:117-138. DOI:

Hauggaard-Nielsen H, Jensen ES (2005). Facilitative root interactions in intercrops. Plant and Soil 274:237-250. DOI:

Haughey E, Suter M, Hofer D, Hoeckstra NJ, McElwain JN, Luscher A, Finn JA (2018). Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance. Scientific Reports 8:15047. DOI:

Hays MD, Fine PM, Geron CD, Kleeman MJ, Gullett BK (2005). Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmospheric Environment 39:6747-6764. DOI:

He Q, Zhao X, Lu J, Zhou G, Yang H, Gao W, Yu W, Cheng T (2015). Impacts of biomass-burning on aerosol properties of a severe haze event over Shanghai. Particuology 20:52-60. DOI:

Herrera JM, Feil B, Stamp P, Liedgens M (2000). Root growth and nitrate-nitrogen leaching of catch crops following spring wheat. Journal of Environmental Quality 39:845-854. DOI:

Hewins DB, Archer SR, Okin GS, McCulley RL, Throop HL (2013). Soil-Litter Mixing Accelerates Decomposition in a Chihuahuan Desert Grassland. DOI:

Higgins KF (1977). Duck nesting in intensively farmed areas of North Dakota. Journal of Wildlife Management 41:232-242. DOI:

Ho K-F, Ho SSH, Huang R-J, Chuang H-C, Cao J-J, Han Y, … Cheng T-J (2016). Chemical composition and bioactivity of PM2.5 during 2013 haze events in China. Atmospheric Environment 126:162-170. DOI:

Hoitink HAJ, Stone AG, Han DY (1997). Suppression of plant disease by composts. Hortscience 32:184-187. DOI:

Hou P, Ding Y, Zhang G, Li Q, Wang S, Tang S, Liu Z, Ding C, Li G (2015). Effects of rice or wheat residue retention on the quality of milled japonica rice in a rice-wheat rotation system in China. The Crop Journal 3:67-73. DOI:

Hou L, Chen X, Kuhn L, Huang J (2019). The effectiveness of regulations and technologies on sustainable use of crop residue in Northeast China. Energy Economics 81:519-527. DOI:

Huang X, Li M, Li J, Song Y (2012). A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment 50:9-15. DOI:

Huang K, Fu JS, Hsu NC, Gao Y, Dong X, Tsay SC, Lam YF (2013). Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmospheric Environment 78:291-302. DOI:

Huang R-J, Zhang Y, Bozzetti C, Ho K-F, Cao J-J, Han Y, … Canonaco F (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514:218-222. DOI:

Hwang HY, Kim GW, Lee YB, Kim PJ, Kim SY (2015). Improvement of the value of green manure via mixed hairy vetch and barley cultivation in temperate paddy soil. Field Crops Research 183:138-146. DOI:

Irfan M, Riaz M, Arif MS, Shahzad SM, Saleem F, Rahman NU, van den Berg L, Abbas F (2014). Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan. Atmospheric Environment 84:189-197. DOI:

Irshad A, Ur Rehman RN, Kareem HA, Yang P, Hu T (2021). Addressing the challenge of cold stress resilience with the synergistic effect of Rhizobium inoculation and exogenous melatonin application in Medicago truncatula. Ecotoxicology and Environmental Safety. 226:112816. DOI:

Iyyemperumal K, Shi W (2008). Soil enzyme activities in two forage systems following application of different rates of swine lagoon effluent or ammonium nitrate. Applied Soil Ecology 38:128-136. DOI:

Jacometti M, Wratten S, Walter M (2010). Review: alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Australian Journal of Grape and Wine Research 16:154-172. DOI:

Jahanzad E, Barker AV, Hasehmi M, Sadeghpour A, Eaton T, Park Y (2017). Improving yield and mineral nutrient concentration of potato tubers through cover cropping. Field Crops Research 212:45-51. DOI:

Jain N, Bhatia A, Pathak H (2014). Emission of air pollutants from crop residue burning in India. Aerosol and Air Quality Research 14:422-430. DOI:

Janusauskaite D, Ciuberkis S (2010). Effect of different soil tillage and organic fertilizers on winter triticale and spring barley stem base diseases. Crop Protection 29:802-807. DOI:

Jenkins B, Turn S, Williams R (1992). Atmospheric emissions from agricultural burning in California: determination of burn fractions, distribution factors, and crop-specific contributions. Agriculture, Ecosystems and Environment 38: 313-330. DOI:

Jensen ES (1996). Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercrops. Plant and Soil 182: 25-38. DOI:

Jeon WT, Choi B, El-Azeem SA, Ok YS (2013). Effect of different seeding methods on green manure biomass, soil properties and rice yield in rice-based cropping systems. African Journal of Biotechnology 10: 2024-2031. DOI:

Jodaugiene D, Pupaliene R, Sinkeviciene A, Marcinkeviciene A, Zebrauskaite A, Baltaduonyte M, Cepuliene R (2010). The influence of organic mulches on soil biological properties. Zemdirbyste-Agriculture 97(2):33-40. DOI:

Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H (2019). Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety 167: 218-226. DOI:

Ju W, Liu L, Jin X, Duan C, Cui Y, Wang J, … Fang L (2020). Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere. 254: 126724. DOI:

Junier P, Alfaro M, Guevara R, Witzel K-P, Caru M (2014). Genetic diversity of Rhizoium present in nodules of Phaseolus vulgaris L. cultivated in two soils of the central region in Chile. Applied Soil Ecology. 80: 60-66. DOI:

Kadziene G, Suproniene S, Auskalniene O, Pranaitiene S, Svegzda P, Versuliene A, Ceseviciene J, Janusauskaite D, Feiza V (2020). Tillage and cover crop influence on weed pressure and Fusarium infection in spring cereals. Crop Protection 127: 104966. DOI:

Kahimba FC, Ranjan RS, Froese J,Entz M, Nason R (2008). Cover crop effects on infiltration, soil temperature, and soil moisture distribution in the Canadian prairies. Applied Engineering in Agriculture 24:321-333. DOI:

Kallenbach CM, Rolston DE, Horwath WR (2010). Cover cropping affects soil N2O) and CO2 emissions differently depending on type of irrigation. Agriculture, Ecosystems and Environment 137:251-260. DOI:

Kaneko T (2000). Complete genome structure of the nitrogen fixing symbiotic bacterium Mesorhizobium loti. DNA Research 7:331-338. DOI:

Kaneko T (2002). Complete genomic sequence of nitrogen-fixing symbiotic bacteria Bradyrhizobium japonicum USDA110. DNA Research 9:189-197. DOI:

Karoney EM, Ochieno DMW, Baraza DL, Muge EK, Nyaboga EN, Naluyange V (2020). Rhizobium improves nutritive suitability and tolerance of Phaseolus vulgaris to Colletotrichum lindemuthianum by boosting organic nitrogen content. Applied Soil Econoly 149:103534. DOI:

Kaskaoutis DG, Kumar S, Sharma D, Singh RP, Kharol SK, Sharma M, … Singh D (2014). Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. Journal of Geophysical Research: Atmospheres 119:5424-5444. DOI:

Kaspar TC, Radke JK, Laflen JM (2001). Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion. Journal of Soil and Water Conservation 56:160-164.

Kaspar TC, Singer JW (2011). The use of cover crops to manage soil. Soil Management Building a Stable Base for Agriculture. pp 321-337. DOI:

Khoshkharam M, Rezaei A, Soleymani A, Shahrajabian MH (2010). Effects of tillage and residue management on yield components and yield of maize in second cropping after barley. Research on Crops 11(3):659-666. DOI:

Khoshkharam M, Shahrajabian MH, Sun W, Cheng Q (2019). Survey the allelopathic effects of tobacco (Nicotiana tabacum L.) on cron (Zea mays L.) growth and germination. Cercetari Agronomice in Moldova 4(180): 332-340. DOI:

Khoshkharam M, Shahrajabian MH, Esfandiary M (2021). The effects of methanol and amino acid glycine betaine on qualitative characteristics and yield of sugar beet (Beta vulgaris L.) cultivars. Notulae Scientia Biologicae 13(2):1-13. DOI:

Kibblewhite MG, Ritz K,Swift MJ (2008). Soil health in agricultural systems. Philosophical Transactions of the Royal Society Series B 363:685-701. DOI:

Kim SY, Lee BJ, Kim JH, Oh SH, Hwang WH, Hwang DY, … Ku YC (2007). The timing for incorporating Chinese milk vetch plant into soil for natural reseeding in the southern part of Korean peninsula. Korean Journal of Crop Science 52:127. DOI:

Kim SY, Park CK, Gwon HS, Khan MI, Kim PJ (2015). Optimizing the harvesting stage of rye as a green manure to maximize nutrient production and to minimize methane production in mono-rice paddies. Science of the Total Environment 537: 441-446. DOI:

Kimetu JM, Lehmann J, Ngoze SO, Mugendi DN, Kinyangi J, Riha S, Verchot L, Recha JW, Pell AN (2008). Reversibility of soil productivity decline with organic matter of different quality along a degradation gradient. Ecosystems 11:726-739. DOI:

Kladivko E, Kaspar TC, Jaynes DB, Malone RW, Singer J, Morin XK, Searchinger T (2014). Cover crops in the upper Midwestern United States; simulated effect on nitrate leaching with artificial drainage. Journal of Soil and Water Conservation 69(4):292-305. DOI:

Kosteckas R, Marcinkeviciene A (2009). The integrated evaluation of the influence of catch crops and manure on spring barley agrocenosis in organic farming. Agronomy Research 1:355-362. DOI:

Kramberger B, Gselman A, Kristl J, Lesnik M, Sustar V, Mursec M, Podvrsnik M (2014). Winter cover crop: the effects of grass-clover mixture proportion and biomass management on maize and the apparent residual N in the soil. European Journal of Agronomy 55:63-71. DOI:

Kurger DHM, Fourie JC, Malan AP (2013). Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes: a review. South African Journal for Enology and Viticulture 34:287-295. DOI:

Lacey CG, Armstrong SD (2014). In field measurements of nitrogen mineralization following fall applications of N and the termination of winter cover crops. Arid, Soil and Water Research 7:53-59. DOI:

Ladoni M, Kravchenko AN, Robertson GP (2015). Topography mediates the influence of cover crops in soil nitrate levels in row crop agricultural systems. Plos One 10:e0143358. DOI:

Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science 304:1623-1627. DOI:

Landgale GW, Blevins RL, Karlen DL, McCool DK, Nearing MA, Skidmore EL, … Williams JR (1991). Cover crop effects on soil erosion by wind and water. In: Hargrove WL (Ed). Cover Crops for Clean Water. SWCS, Ankeny, IA, pp 15-21. DOI:

Lasko K, Vadrevu K (2018). Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environmental Pollution 236:795-806. DOI:

Lawley YE, Weil RR, Teasdale JR (2011). Forage radish cover crop suppresses winter annual weeds in fall and before corn planting. Agronomy Journal 103(1):137-144. DOI:

Lazcano C, Gomez-Brandon M, Revilla P, Dominguez J (2013). Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of Soils 49:723-733. DOI:

Lee CH, Park KD, Jung KY, Ali MA, Lee D, Gutierrez J, Kim PJ (2010). Effect of Chinese milk vetch (Astragalus sinicus L.) as a green manure on rice productivity and methane emission in paddy soil. Agriculture, Ecosystems and Environment 138:343-347. DOI:

Lee H, Fitzgerald J, Hewins DB, Mc. Culley, Archer RL, Rahn SR, Throop THL (2014). Soil moisture and soil-litter mixing effects on surface litter decomposition: a controlled environment assessment. Soil Biology and Biochemistry 72:123-132. DOI:

Li H, Han Z, Cheng T, Du H, Kong L, Chen J, Zhang R, Wang W (2010a). Agricultural fire impacts on the air quality of Shanghai during summer harvest time. Aerosol and Air Quality Research 10:95-101. DOI:

Li W, Shao K, Buseck P (2010b). Haze types in Beijing and the influence of agricultural biomass burning. Atmospheric Chemistry and Physics 10:8119-8130. DOI:

Li Y, Chang SX, Tian L, Zhang Q (2018). Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: a global meta-analysis. Soil Biology and Biochemistry 121:50-58. DOI:

Liang WG, Huang MD (1994). Influence of citrus orchard ground cover plats on arthropod communities in China- a review. Agriculture, Ecosystems and Environment 50:29-37. DOI:

Liang L, Engling G, Cheng Y, Liu X, Du Z, Ma Q, … Xu H (2020). Biomass burning impacts on ambient aerosol at a background site in East China: Insights from a yearlong study. Atmospheric Research 231:104660. DOI:

Liu A, Ma BL, Bomke AA (2005). Effects of cover crops on soil aggregate stability total organic carbon, and polysaccharides. Soil Science Society of America Journal 69:2041-2048. DOI:

Liu X, Herbert SJ, Hashemi AM, Zhang X, Ding G (2006). Effects of agricultural management on soil organic matter and carbon transformation – a review. Plant, Soil and Environment 52:531-543. DOI:

Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML (2015). A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environmental Research 136:120-132. DOI:

Liu JC, Wilson A, Mickley LJ, Dominici F, Ebisu K, Wang Y, … Anderson GB (2016). Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural countries. Epidemiology 28(1):77-85. DOI:

Lozier TM, Macrae ML, Brunke R, Van Eerd LL (2017). Release of phosphorus from crop residue and cover crops over the non-growing season in a cool temperate region. Agricultural Water Management 189:39-51. DOI:

Lupwayi NZ, Haque I (1998). Mineralization of N, P, K, Ca and Mg from Sesbania and Leucaena leaves varying in chemical composition. Soil Biology and Biochemistry 30:337-343. DOI:

Lynch MJ, Mulvaney MJ, Hodges SC, Thompson TL, Thomason WE (2016). Decomposition, nitrogen and carbon mineralization from food and cover crop residues in the central plateau of Haiti. Springer Plus 5:973-982. DOI:

Ma M, Bai K, Qiao F, Shi R, Gao W (2018). Quantifying impacts of crop residue burning in the North China Plain on summertime tropospheric zone over East Asia. Atmospheric Environment 194:14-30. DOI:

Mahmud AA, Upadhyay SK, Srivastava AK, Bhojiya AA (2021). Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability 3:100063. DOI:

Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333:117-128. DOI:

Maltais-Landry G (2015). Legumes have a greater effect on rhizosphere properties (pH, organic acids and enzyme activity) but a smaller impact on soil P compared to other cover crops. Plant and Soil 394(1-2):139-154. DOI:

Marcillo GS, Carlson S, Filbert M, Kaspar T, Plastina A, Miguez FE (2019). Maize system impacts of cover crop management decisions: A simulation analysis of rye biomass response to planting populations in Iowa, U.S.A. Agricultural Systems 176:102651. DOI:

Marques FJM, Pedroso V, Trindade H, Pereira JLS (2018). Impact of vineyard cover cropping on carbon dioxide and nitrous oxide emissions in Portugal. Atmospheric Pollution Research 9:105-111. DOI:

Martin PA, Forsyth DJ (2003). Occurrence and productivity of songbirds in prairie farmland under conventional versus minimum tillage regimes. Agriculture, Ecosystems and Environment 96:107-117. DOI:

Masilionyte L,Maiksteniene S (2016). The effect of alternative cropping systems on the changes of the main nutritional elements in the soil. Zemdirbyste 103(1): 3-10. DOI:

Masilionyte L, Maiksteniene S, Kriauciuniene Z, Jablonskyte-Rasce D, Zou L, Sarauskis E (2017). Effect of cover crops in smothering weeds and volunteer plants in alternative farming systems. Crop Protection 91:74-81. DOI:

Matthiessen JN, Kirkegaard JA (2006). Biofumigation and enhanced biodegradation: Opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences 25:235-265. DOI:

Mazzoncini M, Sapkota TB, Barberi P, Antichi D, Risaliti R (2011). Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil and Tillage Research 114:165-174. DOI:

McKenna P, Cannon N, Conway J, Dooley J (2018). The use of red clover (Trifoliumpratense) in soil fertility-building: A Review. Field Crops Research 221:38-49. DOI:

Mei P-P, Wang P, Yang H, Gui L-G, Christie P, Li L (2021). Maize/faba bean intercropping with rhizobial inoculation in a reclaimed desert soil enhances productivity and symbiotic N2 fixation and reduces apparent N losses. Soil and Tillage Research 213:105154. DOI:

Melero S, Ruiz Porras JC, Herencia JF, Madejon E (2006). Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil and Tillage Research 90:162-170. DOI:

MacMillan J, Adams CV, Trostle C, Rajan N (2021). Testing the efficacy of exisiting USDA Rhizobium germplasm collection accessions as inoculants for guar. Industrial Crops and Products 161:113205. DOI:

McSorley R (2001). Multiple cropping systems for nematode management: a review. The Soil and Crop Society of Florida Proceedings 60:132-142. DOI:

Mercenaro K, Nieddu G, Pulina P, Porqueddu C (2014). Sustainable management of an intercropped Mediterranean vineyard. Agriculture, Ecosystems and Environment 192:95-104. DOI:

Miguez FE,Bollero GA (2005). Review of corn yield response under winter cover cropping systems using meta-analytica methods. Crop Science 45:2318-2329. DOI:

Mitchell JP, Klonsky K, Shrestha A, Fry R, DuSault A, Beyer J, Harben R (2007). Adoption of conservation tillage in California: current stats and future perspectives. Australian Journal of Experimental Agriculture 47(12):1383-1388. DOI:

Mitchell JP, Shrestha A, Horwath WR, Southard RJ, Madden NM, Veenstra J, Munk DS (2015). Tillage and cover cropping affect crop yield and soil carbon in the San Joaquin Valley. Agronomy Journal 107:588-596. DOI:

Mitchell JP, Shrestha A, Mathesius K, Scow KM, Southard RJ, Haney RK, … Horwath WR (2017). Cover cropping and no-tillage improve soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil and Tillage Research 165: 325-335. DOI:

Mokwunye AU, De Jager, Smaling EMA (ed) (1996). Restoring and maintaining the productivity of West African soils: key to sustainable development. Misc. Fert. Stud. 14. Int. Fert. Dev. Ctr.- Africa. Lome, Togo. DOI:

Mojthahedi H, Santo GS, Ingham RE (1993). Suppression of M. chitwoodi with Sudan grass cultivars as green manure. Journal of Nematology 25:303-311. DOI:

Moller K, Reents HJ (2009). Effects of various cover crops after peas on nitrate leaching and nitrogen supply to succeeding winter wheat or potato crops. Journal of Plant Nutrition and Soil Science 172(2):277-287. DOI:

Monteiro A, Lopes CM (2007). Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agriculture, Ecosystems and Environment 121:336-342. DOI:

Morlat R, Jacquet A (2003). Grapevine root system and soil characteristics in vineyard maintained long-term with or without interrow sward. American Journal of Enology and Viticulture 54:1-7. DOI:

Motavalli PP, Kelling KA, Converse JC (1989). First-year nutrient availability from injected dairy manure. Journal of Environmental Quality 18:180. DOI:

Muhammad I, Sainju UM, Zhao F, Khan A, Ghimire R, Fu X, Wang J (2019). Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil and Tillage Research 192:103-112. DOI:

Munoz GR,Kelling KA, Powell JM, Speth PE (2004). Comparison of estimates of first-year dairy manure nitrogen availability or recovery using nitrogen-15 and other techniques. Journal of Environmental Quality 33:719-727. DOI:

Murphy RP, Montes-Molina JA, Govaerts B, Six J, Kessel CV, Fonte SJ (2016). Crop residue retention enhances soil properties and nitrogen cycling in smallholder maize systems of Chiapas, Mexico. Applied Soil Ecology 103:110-116. DOI:

Muscas E,Cocco A,Mercenaro L,Cabras M, Lentini A,Porqueddu C, Nieddu G (2017). Effects of vineyard floor cover crops on grapevine vigor, yield and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agriculture, Ecosystems and Environment 237:203-212. DOI:

Muturi JJ, Mbugi JP, Mueke JM, Lagerlof J, Mungatu JK, Nyamasyo G, Gikungu M (2011). Effect of integrated soil fertility management interventions on the abundance and diversity soil collembolan in Embu and Taita districts, Kenya. Tropical and Subtropical Agroecosystems 13:35-42. DOI:

Na CS, Lee YH, Hong SH, Jang CS, Kang BH, Lee JK, Kim T-H, Kim W (2007). Changes of seed quality of Chinese milk vetch (Astragalus sinicus L.) during seed developmental stages. Journal of Crop Science and Biotechnology 52:363-369. DOI:

Nadeu E, Berhe AA, De venter K, Boix-Fayos C (2012). Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach. Biogeosciences 9:1099-1111. DOI:

Nasim W, Ahmad A, Belhouchette H, Hoogenboom G (2016). Evaluation of the OILCROP-SUN model for sunflower hybrids under different agro-meteorological conditions of Punjab-Pakistan. Field Crops Research 188:17-30. DOI:

Naz I, Palomares-Rius JE, Saifullah V, Block A, Khan MR, Ali S (2013a). In vitro and in planta nematicidal activity of Fumaria parviflora (Fumariaceae) against the southern root-know nematode Meloidogyne incognita. Plant Pathology 62:943-962. DOI:

Naz I, Saifullah, Khan MR (2013b). Nematicidal activity of nonacosane-10-ol and 23a-homostigmast-5-en-3β-ol isolated from the roots of Fumaria parviflora (Fumariaceae). Journal of Agricultural and Food Chemistry 61:5689-5695. DOI:

Naz I, Palomares-Rius SJE, Khan SM, Ali S, Ahmad M, Ali A, Khan A (2015). Control of Southern root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood on tomato using green manure of Fumaria parviflora Lam (Fumariaceae). Crop Protection 67:121-129.

Naz I, Saifullah,Palomares-Rius JE, Khan SM, Ali S, Baig A (2014). Sustainable management of the Southern Root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood, by amendments of Fumaria parviflora. International Journal of Agriculture and Biology.

Naz I, Palomares-Rius SJE, Khan SM, Ali S, Ahmad M, Ali A, Khan A (2015). Control of Southern root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood on tomato using green manure of Fumaria parviflora Lam (Fumariaceae). Crop Protection 67:121-129. DOI:

Ni H, Han Y, Cao J, Chen L-WA, Tian J, Wang X, … Huang R-J (2015). Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmospheric Environment 123:399-406. DOI:

Ni H, Tian J, Wang X, Wang Q, Han Y, Cao J, … Dusek U (2017). PM2.5 emissions and source profiles from open burning of crop residues. Atmospheric Environment 169:229-237. DOI:

Niu X, Ho SSH, Ho KF, Huang Y, Sun J, Wang Q, … Cao J (2017). Atmospheris levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environmental Pollution 231:1075-1084 (Barking, Essex: 1987). DOI:

Nouri A, Lee J, Yin X, Tyler DD, Saxton AM (2019). Thirty-four years of no-tillage and cover crops improve soil quality and increase cotton yield in Alfisols, Southeastern USA. Geoderma 337:998-1008. DOI:

Novara A, Minacapilli M, Santoro A, Rodrigo-Comino J, Carrubba A, Sarno M, Venezia G, Gristina L (2019). Real cover contribution to soil organic carbon sequestration in sloping vineyard. Science of the Total Environment 652:300-306. DOI:

Nunes T, Cardoso P, Freitas R, Figueira E (2018). Protective effects of farnesol on a Rhizobium strain exposed to cadmium. Ecotoxicology and Environmental Safety 165:622-629. DOI:

Oanh NTK, Permadi DA, Hopke PK, Smith KR, Dong NP, Dang AN (2018). Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010-2015. Atmospheric Environment 187:163-173. DOI:

Ofori F, Stern WR (1987). Cereal-legume intercropping systems. Advances in Agronomy 41:41-90. DOI:

Ogbaji PO, Li J, Xue X, Shahrajabian MH, Egrinya EA (2018a). Impact of bio-fertilizer or nutrient solution of spinach (Spinacea Oleracea) growth and yield in some province soils of P. R. China. Cercetari Agronomice in Moldova 51(2):43-52. DOI:

Ogbaji PO, Li J, Xue X, Shahrajabian MH, Egrinya EA (2018b). Mineralogical and textural characteristics of soils of Hancheng and Shannxi province, China. Communications in Soil Science and Plant Analysis 49(2):1-5. DOI:

Olesen J,Askegaard M, Rasmussen I (2000). Design of an organic farming crop rotation experiment. Acta Agric. Scand Sect. B-Soil Plant Science 50:13-21. DOI:

Olesen JE, Hansen EM, Askegaard M, Rasmussen IA (2007). The value of catch crops and organic manures for spring barley in organic arable farming. Field Crops Research 100:168-178. DOI:

Ordonez-Fernandez, de Torres MAE-R, Marquez-Garcia J, Moreno-Garcia M, Carbonell-Bojollo RM (2018). Legumes used as cover crops to reduce fertilization problems improving soil nitrate in an organic orchard. European Journal of Agronomy 95:1-13. DOI:

Ovalle C, Pozo A, Peoples MB, Lavin A (2010). Estimating the contribution of nitrogen from legume cover crops to the nitrogen nutrition of grapevines using a 15N dilution technique. Plant and Soil 334:247-259. DOI:

Pakeerathan K, Mountai G, Trashing N (2009). Eco-friendly management of root knot nematodes Meloidogyne incognita (Kofoid and White) Chitwood using different green leaf manures on tomato under field conditions. American-Eurasian Journal of Agricultural and Environmental Sciences 6:494-497. DOI:

Pandey R, Sikora RA, Kalra A, Singh HB, Pandey S (2003). Plants and their products act as major inhibitory agents: In: Trivedi PC (Ed). Nematod Management in Plants. Scientific Publishers, Jodhpur, pp 103-131. DOI:

Pantoja JL,Woli KP, Sawyer JE, Barker DW (2015). Corn nitrogen fertilization requirement and corn-soybean productivity with a rye cover crop. Soil Science Society of America Journal 79:1482-1495. DOI:

Paul BK, Vanlauwe B, Ayuke F, Gassner A, Hoogmoed M, Hurisso TT, … Pulleman MM (2013). Medium-term impact of tillage and residue management soil aggregate stability: soil carbon and crop productivity. Agriculture, Ecosystems and Environment 164:14-22. DOI:

Peoples MB, Ladha JK, Herridge DF (1995). Enhancing legume N2 fixation through plant and soil management. Plant and Soil 174:83-101. DOI:

Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, et al. (2009). The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1-17. DOI:

Pereira SIA, Lima AIG, Figueira EMDAP (2006). Heavy metal toxicity in Rhizobium leguminosarum biovar. viciae isolated from soils subjected to different sources of heavy-metal contamination: Effects on protein expression. Applied Soil Ecology 33(3):286-293. DOI:

Pilipavicius V, Aliukoniene I, Romaneckas K, Sarauskis E (2010). Chemical weed control in the winter wheat (Triticum aestivum L.) crop of early stages of development: II. Crop productivity. Journal of Food, Agriculture and Environment 8(2):456-459. DOI:

Pittelkow CM, Liang XQ, Linquist BA, van Groenigen KJ, Lee J, Lundy ME, … van Kessel C (2015). Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365-368. DOI:

Poeplau C, Aronsson H, Myrbeck A, Katterer T (2015). Effect of perennial ryegrass cover crop on soil organic carbon stocks in southern Sweden. Geroderma Reg 4:126-133. DOI:

Poffenbarger HJ, Mirsky SB, Weil RR, Maul JE, Kramer M, Spargo JT, Cavigelli MA (2015). Biomass and nitrogen content of hairy vetch-cereal rye cover crop mixtures as influenced by species proportions. Agronomy Journal 107:2069-2082. DOI:

Potter MJ, Davies K, Rathjen AJ (1998). Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. Journal of Chemical Ecology 24:67-80. DOI:

Pinto P, Fernandez Long ME, Pineiro G (2017). Including cover crops during fallow periods for increasing ecosystem services: Is it possible in croplands of Southern South America? Agriculture, Ecosystems and Environment 248:48-57. DOI:

Piotrowska A, Wilczewski E (2012). Effects of catch crops cultivated for green manure and mineral nitrogen fertilization on soil enzyme activities and chemical properties. Geoderma 189-190:72-80. DOI:

Ponge JF, Gillet S, Dubs F,Fedoroff E, Haese I, Sousa PJ, Lavelle P (2003). Collembola communities as bioindicators of land use intensification. Soil Biology and Biochemistry 35:813-826. DOI:

Prechsl UE,Wittwer R, van der Heijden MGA, Luscher G, Jeanneret P, Nemecek T (2017). Assessing the environmental impacts of cropping systems and cover crops: Life cycle assessment of FAST, a long-term arable farming field experiment. Agricultural Systems 157:39-50. DOI:

Preissel S, Reckling M, Schlafke N, Zander P (2015). Magnitude and farm-economic value of grain legumes pre-crop benefits in Europe: a review. Field Crops Research175:64-79. DOI:

Pu C, Kan Z-R, Liu P, Ma S-T, Qi J-T, ZhaoX, Zhang H-I (2019). Residue management induced changes in soil organic carbon and total nitrogen under different tillage practices in the North China Plain. Journal of Integrative Agriculture 18(6):1337-1347. DOI:

Puig CG, Revilla P,Barreal ME, Reigosa MJ, Pedrol N (2019). On the suitability of Eucalyptus globules green manure for field weed control. Crop Protection 121:57-65. DOI:

Qi Z, Helmers MJ, Kaleita AL (2011a). Soil water dynamics under various agricultural land covers on a subsurface drained field in north-central Iowa, USA. Agricultural Water management 98:665-674. DOI:

Qi Z, Helmers MJ, Malone RW, Thorp KR (2011b). Simulating long-term impacts of winter rye cover crop on hydrologic cycling and nitrogen dynamics for a corn-soybean crop system. Transactions of the ASABE 54:1575-1588. DOI:

Qin Y,Xie S (2011). Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period. Environmental Pollution 159:3316-3323. DOI:

Qiu H, Sun L, Xu X, Cai Y, Bai J (2014). Potentials of crop residues for commercial energy production in China. A geographic and economic analysis. Biomass Bioenergy 64:110-123. DOI:

Quiroga A, Funaro DO, Fernandez R, Noellemeyer J (2005). Factoresedaficos y de manejo que condicionan la eficiencia del barcechoen la region pampeana. Ci. Suelo (Argentina) 23:79-86. DOI:

Rahman S, Parkinson RJ (2007). Productivity and soil fertility relationships in rice production systems, Bangladesh. Agricultural Systems 92:318-333. DOI:

Ranells NN, Wagger MG (1997). Grass-legume bicultures as winter annual cover crops. Agronomy Journal 89:659-665. DOI:

Randrianjafizanaka MT, Autfray P, Andrianaivo AP, Ramonta IR, Rodenburg J (2018). Combined effects of cover crops, mulch, zero-tillage and resistant varieties on Striga asiatica (L.) Kuntze in rice-maize rotation systems. Agriculture, Ecosystems and Environment 256(3):23-33. DOI:

Rappold AG, Stone SL, Cascio WE, Neas LM, Kilaru VJ, Sue Carraway M, … Meredith JT (2011). Peat bog wildfire smoke exposure in rural North Carolina is associated with cardiopulmonary emergency department visits assessed through syndromic surveillance. Environmental Health Perspectives 119(10):1415-1420. DOI:

Rasmussen J, Soegaard K, Pirhofer-Walzl K, Eriksen J (2012). N2-ixation and residual N effect of four legume species and four companion grass species. European Journal of Agronomy 36:66-74. DOI:

Ratnadass A, Fernandes P, Avelino J, Habib R (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development 32:273-303. DOI:

Ravindra K, Singh T, Mor S (2019). Emissions of air pollutants from primary crop residue burning in India and their mitigation strategies for cleaner emissions. Journal of Cleaner Production 208:261-273. DOI:

Razakatiana ATE, Trap J, Baohanta RH, Raherimandimby M, Le Roux C, Duponnois R, Ramanankierana H, Becquer T (2020). Benefits of dual inoculation with arbuscular mycorrhizal fungi and rhizobia on Phaseolus vulgaris planted in a low-fertility tropical soil. Pedobiologia 83:150685. DOI:

Reckling M, Hecker JM, Bergkvist G, Watson CA, Zander P, Schlafke N, … Bachinger J (2016). A cropping system assessment framework-evaluating effects of introducing legumes into crop rotations. European Journal of Agronomy 76:186-197. DOI:

Reeves DW (1994). Cover crops and rotations. In: Hatfield JL, Stewart BA (Eds). Crops Residue Management Advances in Soil Science. Lewis Publishers, Boca Raton, FL, pp 125-172. DOI:

Reid CE, Brauer M, Johnston F, Jerrett M, Balmes JR, Elliott CT (2016). Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives 124(9):1334-1343. DOI:

Ren L, Nest TV, Ruysschaert G, D,Hose T, Cornelis WM (2019). Short-term effects of cover crops and tillage methods on soil physical properties and maize growth in a sandy loam soil. Soil and Tillage Research 192:76-86. DOI:

Ripoche A, Rellier J-PP, Martin-Clouaire R, Pare N, Biarnes A, Gary C (2011). Modelling adaptive management of intercropping in vineyards to satisfy agronomic and environmental performances under Mediterranean climate. Environmental Moedlling and Software 26:1467-1480. DOI:

Ritchie JC, McCarty GW (2003). 137Cesium and soil carbon in a small agricultural watershed. Soil and Tillage Research 69:45-51. DOI:

Roberts R, Jackson RW, Mauchline TH, Hirsch PR, Shaw LJ, Doring TF, Jones HE (2017). Is there sufficient Ensifer and Rhizobium species diversity in UK farmland soils to support red clover (Trifolium pratense), white clover (T. repens), lucerne (Medicago sativa) and black medic (M. lupulina)? Applied Soil Ecology 120:35-43. DOI:

Rocha KF, Souza MD, Almeida DS, Chadwick DR, Jones DL, Mooney SJ, Rosolem CA (2020). Cover crops affect the partial nitrogen balance in a maize-forage cropping system. Geoderma 360:114000. DOI:

Roper WR, Duckworth O, Grossman JM, Israel DW (2020). Rhizobium leguminosarum strain combination effects on nodulation and biological nitrogen fixation with Vicia villosa. Applied Soil Ecology 156:103703. DOI:

Rosen CJ, Bierman PM (2008). Best Management Practices for Nitrogen Use: Irrigated Potatoes. Minnesota Extension, University of Minnesota. DOI:

Rosolem CA, Castoldi G, Pivetta LA, Ochsner TE (2018). Nitrate leaching in soybean rotations without nitrogen fertilizer. Plant and Soil 423:27-40. DOI:

Roth R, Ruffatti MD, O,Rourke P, Armstrong SD (2017). A cost analysis approach to valuating cover crop environmental and nitrogen cycling benefits: a central Illinois on-farm case study. Agricultural Systems 159:67-77.

Roth RT, Ruffatti MD, O,Rourke PD, Armstrong SD (2018). A cost analysis approach to valuing cover crop environmental and nitrogen cycling benefits; A central Illinois on farm case study. Agricultural Systems 159:69-77. DOI:

Ruffatti MD, Roth RT, Lacey CG, Armstrong SD (2019). Impacts of nitrogen application timing and cover crop inclusion on subsurface drainage water quality. Agricultural Water Management 211:81-88. DOI:

Sahai S, Sharma C, Singh D, Dixit C, Singh N, Sharma P, … Gupta P (2007). A study for development of emission factors for trace gases and carbonaceous particulate species from in-situ burning of wheat straw in agricultural fields in India. Atmospheric Environment 41(39):9173-9186. DOI:

Sahito Z, Zehra A, Chen S, Yu S, Tang L, Ali Z, … Yang X (2022). Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion, root exudates and metal uptake efficiency. Journal of Hazardous Materials 424(Part B):127442. DOI:

Saikia R, Sharma S, Thind HS, Sidhu HS, Singh Y (2019). Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecological Indicators 103:383-394. DOI:

Sainju UM, Singh BP, Whitehead WF, Wang S (2007). Accumulation and crop uptake of soil mineral nitrogen as influenced by tillage, cover crops, and nitrogen fertilization. Agronomy Journal 99:682-691. DOI:

Sanchez PA, Sheperd KD,Soule F, Place M, Buresh RJ, Izac AMN (1997). Soil fertility replenishing in Africa. An investment in natural resource capital. In: Buresh RJ (Ed). Replenishing Soil Fertility in Africa. SSA Spec. Publ. 51. SSSA, Madison, W. I. DOI:

Sanderfoot OV, Holloway T (2017). Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environmental Research Letters 12(8):083002. DOI:

Santos TDL, Nunes ABA, Giongo V, Barros VDS, Figueiredo MCBD (2018). Cleaner fruit production with green manure: The case of Brazilian melons. Journal of Cleaner Production 181:260-270. DOI:

Sarangi T, Naja M, Ojha N, Kumar R, Lal S, Venkataramani S, … Chandola HC (2014). First simultaneous measurements of ozone, Co and Noy at a high-altitude regional representative site in the central Himalayas. Journal of Geophysical Research: Atmospheres 119:1592-1611. DOI:

Sen A, Abdelmaksoud AS, Nazeer Ahammed Y, Alghamdi M, Banerjee T, Bhat MA, … Mandal TK (2017). Variations in particulate matter cover Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: role of pollution pathways. Atmospheric Environment 154:200-224. DOI:

Shahrajabian MH, Khoshkharam M, Sun W, Cheng Q (2020). The impact of manganese sulfate on increasing grain yield, protein and manganese content of wheat cultivars in semi-arid region. Journal of Stress Physiology and Biochemistry 16(1):76-79. DOI:

Shahrajabian MH, Sun W, Cheng Q (2021). The importance of Rhizobium, Agrobacterium, Bradyrhizobium, Herbaspirillum, Sinorhizobium in sustainable agricultural production. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(3):12183. DOI:

Sharpley AN, Smith SJ (1989). Mineralization and leaching of phosphorus from soil incubated with surface-applied and incorporated crop residue. Journal of Environmental Quality 18(1):101-105. DOI:

Shelton R, Jacobsen KL, McCulley R (2018). Cover crops and fertilization alter nitrogen loss in organic conventional conservation agriculture systems. Frontiers in Plant Science 8:2260. DOI:

Siczek A, Lipiec J (2011). Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching. Soil and Tillage Research 114:50-56. DOI:

Singh N, Agarwal R, Awasthi A, Gupta PK, Mittal SK (2010). Characterization of atmospheric aerosols for organic tarry matter and combustible matter during crop residue burning and non-crop residue burning months in Northwestern region of India. Atmospheric Environment 44:1292-1300. DOI:

Singh G, Bhattacharyya R, Das TK, Sharma AR, Ghosh A, Das S, Jha P (2018). Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic plains. Soil and Tillage Research 184:291-300. DOI:

Sirithian D, Thepanondh S, Sattler ML, Laowagul W (2018). Emissions of volatile organic compounds from maize residue open burning in the northern region of Thailand. Atmospheric Environment 176:179-187. DOI:

Smith RG, Atwood LW, Warren ND (2014). Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS One 9:e97351. DOI:

Snapp S, Swinton SM, Labarta R, Mutch D, Black JR, Leep R, Nyiraneza J, O,Neil K (2005). Evaluating cover crops for benefits, costs and performance within cropping system niches. Agronomy Journal 97:322-332. DOI:

Snapp S, Surapur S (2018). Rye cover crop retains nitrogen and does not reduce corn yields. Soil and Tillage Research 180:107-115. DOI:

Soleymani A, Shahrajabian MH, Naranjani L (2011a). Changes in qualitative characteristics and yield of three cultivars of berseem clover intercropped with forage corn in low input farming system. Journal of Food, Agriculture and Environment 9(1):345-347. DOI:

Soleymani A, Shahrajabian MH, Naranjani L (2011b). The effects of nitrogen as starter fertilizer on ash percentage, important elements and solar radiation absorption of berseem clover cultivars intercropped by corn. Journal of Food, Agriculture and Environment 9(1):342-344.

Soleymani A, Shahrajabian MH, Naranjani L (2011c). Yield and yield components of berseem clover cultivars in low nitrogen fertilizer input farming. Journal of Food, Agriculture and Environment 9(2):281-283.

Soleymani A, Shahrajabian MH (2012a). Forage yield and quality in intercropping of forage corn with different cultivars of berseem clover in different levels of nitrogen fertilizer. Journal of Food, Agriculture and Environment 10(1):602-604.

Soleymani A, Shahrajabian MH (2012b). Changes in seed yield and yield components of elite barley cultivars under different plant populations and sowing dates. Journal of Food, Agriculture and Environment 10(1):596-598.

Soleymani A, Shahrajabian MH, Khoshkharam M (2012). Green manuring effects of different cereals on organic carbon and soil physical properties. International Journal of Agriculture and Crop Sciences 4(7):359-363.

Soleymani A, Shahrajabian MH, Khoshkharam M (2016). The impact of barley residue management and tillage on forage maize. Romanian Agricultural Research 33:161-167.

Soleymani A, Shahrajabian MH (2018). Changes in germination and seedling growth of different cultivars of cumin to drought stress. Cercetari Agronomice in Moldova 51(1):91-100. DOI:

Soratto RP, Rosolem CA, Crusciol CAC (2011). Integracao Lavoura-Pecuaria-Floresta. Botucatu, SP, Brazil, FEPAF.

Sparling GP, Wheeler D, Vesely ET, Schipper LA (2006). What is soil organic matter worth? Journal of Environmental Quality 35:548-557. DOI:

Stark C, Condron LM, Stewart A, Di HJ, O,Callaghan M (2007). Influence of organic and mineral amendments on microbial soil properties and processes. Applied Soil Ecology 35:79-93. DOI:

Stopes C, Millington S, Woodward L (1996). Dry matter and nitrogen accumulation by three leguminous green manure species and the yield of a following wheat crop in an organic production system. Agriculture, Ecosystems and Environment 57:189-196. DOI:

Stopes C, Lord EI, Philipps L, Woodward L (2002). Nitrate leaching from organic farms and conventional farms following best practice. Soil Use and Management 18:256-263. DOI:

Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, … Yarber KF (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research Atmospheres 108: 8809. DOI:

Stroud JL, Irons DE, Watts CW, Storkey J, Morris NL, Stobart RM, Fielding HA, Whitmore AP (2017). Cover cropping with oilseed radish (Raphanus sativus) alone does not enhance deep burrowing earthworm (Lumbricus terrestris) midden counts. Soil and Tillage Research 165:11-15. DOI:

Sugino T, Nobuntou W, Srisombut N, Rujikun P, Luanmanee S, Punlai N (2013). Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in rain fed area of Thailand. International Soil and Water Conservation Research 1(3):29-36. DOI:

Sun W, Shahrajabian MH, Cheng Q (2019). Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biology 5(1673688):1-25. DOI:

Sun W, Shahrajabian MH, Khoshkharam M, Cheng Q (2020). Adaptation of acupuncture and traditional Chinese herbal medicines models because of climate change. Journal of Stress Physiology and Biochemistry 16(1):85-90. DOI:

Swift MJ, Bignell D (2000). Standard methods for assessment of soil biodiversity and land use practice. Alternatives to Slash and Burn Project. ICRAF, Nairobi, pp 41. DOI:

Swift MJ, Shepherd KD (2007). Saving Africa’s Soils: Science and Technology for Improved Soil Management in Africa: World Agroforestry Centre.

Tang HM, Xiao XP, Tang WG, Lin YC, Wang K, Yang GL (2014). Effects of winter cover crops residue returning on soil enzyme activities and soil microbial community in double-cropping rice fields. PloS One 9(6):e100443. DOI:

Tang HM, Cheng KK, Xiao XP, Tang WG, Wang K, Li C, Zhang F, Sun YT (2017). Effects of different winter cover crops on soil organic carbon in a double cropping rice paddy field. China Journal of Applied Ecology 28(2):465-473. DOI:

Teague R, DeLaune PB, Dowhower SL (2019). Impacts of over-seeding bermudagrass pasture with multispecies cover crops on soil water availability, microbiology and nutrient status in North Texas. Agriculture, Ecosystems and Environment 273:117-129. DOI:

Teasdale JR, Beste CE, Potts WE (1991). Response of weeds to tillage and cover crop residues. Weed Science 39:195-199. DOI:

Teasdale JR, Mohler CL (2000). The quantitative relationship between weed emergence and the physical properties of mulches. Weed Science 48:385-392.[0385:tqrbwe];2 DOI:[0385:TQRBWE]2.0.CO;2

Teasdale JR, Rice CP, Cai G, Mangum RW (2012). Expression of allelopathy in the soil environment: soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. Plant Ecology 213:1893-1905. DOI:

Tesic D, Keller M, Hutton RJ (2007). Influence of vineyard floor management practices on grapevine vegetative growth, yield, and fruit composition. American Journal of Enology and Viticulture 58:1-11. DOI:

Thapa S, Adams CB, Trostle C (2018). Root nodulation in guar: Effects of soils, Rhizobium inoculants, and guar varieties in a controlled environment. Industrial Crops and Products. 120:198-202. DOI:

Thorburn PJ, Meier EA, Collins K, Robertson FA (2012). Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil and Tillage Research 120:99-111. DOI:

Thorup-Kristensen K (1994). The effect of nitrogen catch crop species on the nitrogen nutrition of succeeding crops. Fertilizer Research 37:227-234. DOI:

Thorup-Kristensen K, Magid J, Jensen LS (2003). Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in Agronomy 79:227-302. DOI:

Throop HL, Archer SR (2009). Resolving the dryland decomposition conundrum: Some new perspectives on potential drivers. In: Luttge U (Ed). Progress in Botany. Springer, Heidelberg, pp 171-194.[0594:mweaaf];2 DOI:

Tillman G, Schomberg H, Phatak S, Mullinix B, Lachnicht S, Timper P, Olson D (2004). Influence of cover crops on insect pests and predators in conservation tillage cotton. Journal of Economic Entomology 97:1217-1232. DOI:

Tilman D, Reich PB, Knops JMH (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629-632. DOI:

Tipayarom A, Oanh NTK (2020). Influence of rice straw open burning on levels and profiles of semi-volatile organic compounds in ambient air. Chemosphere 243:125379. DOI:

Tittonell P, Muriuki A, Shepherd KD, Mugendi D, Kaizzi KC, Okeyo J, … Vanlauwe B (2010). The diversity of rural livelihoods and their influence on soil fertility in agricultural systems of East Africa- A typology of smallholder farms. Agricultural Systems 103:83-97. DOI:

Toh YY, Lim SF, von Glasow R (2013). The influence of meteorological factors and biomass burning on surface ozone concentrations at Tanah Rata, Malaysia. Atmospheric Environment 70:435-446. DOI:

Tosti G,Benincasa P, Guiducci M (2010). Competition and facilitation in hairy vetch-barley intercrops. Italian Journal of Agronomy 3:239-247. DOI:

Tosti G, Benincasa P, Farneselli M, Pace R, Tei F, Guiducci M, Thorup-Kristensen K (2012). Green manuring effect of pure and mixed barley-hairy vetch winter cover crops on maize and processing tomato N nutrition. European Journal of Agronomy 43:136-146.[0467:rbtate];2 DOI:

Tosti G, Benincasa P, Farneselli M, Tei F, Guiducci M (2014). Barley-hairy vetch mixture as cover crop for green manuring and the mitigation of N leaching risk. European Journal of Agronomy 54:34-39. DOI:

Trentmann J, Yokelson RJ, Hobbs PV, Winterrath T, Christian YJ, Andreae MO, Mason SA (2005). An analysis of the chemical processes in the smoke plume from a savanna fire. Journal of Geophysical Research: Atmospheres 110:1-20. DOI:

Tribouillois H, Fort F, Cruz P, Charles R, Flores O, Garnier E, Justes E (2015). A functional characterization of a wide range of cover crop species: growth and nitrogen acquisition rates, leaf traits and ecological strategies. PloS One 10(3):e0122156. DOI:

Tribouillois H, Cohan J-P, Justes E (2016). Cover crop mixtures including legume produce ecosystem services of nitrate capture and green manuring: assessment combining experimentation and modeling. Plant and Soil 401:347-364. DOI:

Turk MA,Tawaha AM (2003). Allelopathis effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Protection 22(4):673-677. DOI:

Turmel M-S, Speratti A, Baudron F, Verhulst N, Govaerts B (2015). Crop residue management and soil health: A system analysis. Agricultural Systems 134:6-16. DOI:

Ulen B, Aronsson H, Bechmann M, Krogstad T, Oygarden L, Stenberg M (2010). Soil tillage methods to control phosphorus loss and potential side-effects: a Scandinavian review. Soil Use and Management 26(2):94-107. DOI:

Unger PW, Vigil MF (1998). Cover crop effects on soil water relationships. Journal of Soil and Water Conservation 53:200-207. DOI:

Valarini PJ, Cruz Diaz Alvarez M, Gasco JM, Guerrero F, Tokeshi H (2002). Integrated evaluation of soil quality after the incorporation of organic matter and microorganisms. Brazilian Journal of Microbiology 33:35-40. DOI:

Valdes-Gomez H, Gary C, Cartolaro P, Lolas-Caneo M, Calonnec A (2011). Powdery mildew development is positively influenced by grapevine vegetative growth induced by different soil management strategies. Crop Protection 30:1168-1177. DOI:

VanBeek KR, Brawn JD, Ward MP (2014). Does no-till soybean farming provide any benefits for birds? Agriculture, Ecosystems and Environment 185:59-64. DOI:

Vanlauwe B, Wendt J, Diels J (2001). Combined application of organic matter and fertilizer. In: Dick WA (Ed). Sustaining Soil Fertility in West Africa. Soil Science Society of America, Inc., Madison, Wisconsin, USA, pp 247-280. DOI:

Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil 327:235-246. DOI:

Vaughan JD, Evanylo GK (1998). Corn response to cover crop species, spring desiccation time, and residue management. Agronomy Journal 90:536-544. DOI:

Velicka R, Marchinkeviciene A, Pupaliene R, Butkeviciene LM, Kosteckas R, Cekanauskas S, Kriauciuniene Z (2016). Winter oilseed rape and weed competition in organic farming using non-chemical weed control. Zemdirbyste103(1):11-20. DOI:

Veloso MG, Cecagno D, Bayer C (2019). Legume cover crops under no-tillage favor organo-mineral association in microaggregates and soil C accumulation. Geology. DOI:

Verburg K, Bond WJ, Hunt JR (2012). Fallow management in dryland agriculture: explaining soil water accumulation using a pulse paradigm. Field Crop Research 130:68-79. DOI:

Verman S, Worden J, Pierre B, Jones DBA, Al-Saadi J, Boersma F, … Worden H (2009). Ozone production in boreal fire smoke plumes using observations from the Tropospheric Emission Spectrometer and the Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres 114. DOI:

Verzeaux J, Alahmad A, Habbib H, Nivelle E, Roger D, Lacoux J, … Tetu T (2016). Cover crops prevent the deleterious effect of nitrogen fertilization on bacterial diversity by maintaining the carbon content of ploughed soil. Geoderma 281:49-57. DOI:

Villamil MB, Bollero GA, Darmody RG, Simmons FW, Bullock DG (2006). No-till corn/soybean systems including winter cover crops. Soil Science society of America Journal 70(6):1936. DOI:

Vogelweight F, Thiery D (2017). Cover crop differentially affects arthropods, but not diseases, occurring on grape leaves in vineyards. Aust. J. Grape Wine Res. 23: 426-431. DOI:

Vos J, van der Putten PEL (1997). Field observation on nitrogen catch crops. I. Potential and actual growth and nitrogen accumulation in relation to sowing date and crop species. Plant and Soil 195:299-309. DOI:

Vos J, van der Putten PEL (2001). Field observation on nitrogen catch crops. III. Transfer of nitrogen to the succeeding main crop. Plant and Soil 236: 2263-2273. DOI:

Wall DH (2004). Sustaining Biodiversity and Ecosystem Services in Soils and Sediments, Island Press, Washington, D. C. DOI:

Walmsley DC, Siemens J, Kindler R, Kaiser K, Saunders M, Fichtner A, Kaupenjohann M, Osborne BA (2018). Reduced nitrate leaching from an Irish cropland soil under non-inversion tillage with cover cropping greatly outweighs increased dissolved organic nitrogen leaching. Agriculture, Ecosystems and Environment 265:340-349. DOI:

Wang L, Cao Y, Wang ET, Qiao JY, Jiao S, Liu ZS, Zhao L, Wei GH (2016). Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi province. Systematic and Applied Microbiology 39:211-219. DOI:

Wang J, Xi F, Liu Z, Bing L, Alsaedi A, Hayat T, Ahmad B, Guan D (2018). The spatiotemporal features of greenhouse gases emissions from biomass burning in China from 2000 to 2012. Journal of Cleaner Production 181:801-808. DOI:

Wendling M, Charles R, Herrera J, Amosse C, Jeangros B, Walter A, Buchi L (2019). Effect of species identity and diversity on biomass production and its stability in cover crop mixtures. Agriculture, Ecosystems and Environment 281:81-91. DOI:

Werner D (2007). Molecular biology and ecology of the Rhizobia-legume symbiosis. In: Pinto R, Varanini Z, Nannipieri P (Eds). The rhizosphere: biochemistry and organic substances at the soil-plant interface. Second edition CRC Press, Boca Raton, FL, pp 237-266. DOI:

White CM, Tianna DuPont S, Hautau M, Hartman D, Finney DM, Bradley B, … Kaye JP (2017). Managing the trade off between nitrogen supply and retention with cover crop mixtures. Agriculture, Ecosystems and Environment 237:121-133. DOI:

Wickings K, Grandy AS, Kravchenko AN (2016). Going with the flow: landscape position drives differences in microbial biomass and activity in conventional, low input, and organic agricultural systems in the Midwestern US. Agriculture, Ecosystems and Environment 218:1-10. DOI:

Wiggins B, KinkelL (2005). Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology 95:178-185. DOI:

Wilcoxen CA, Walk JW, Ward MP (2018). Use of cover crop fields by migratory and residue birds. Agriculture, Ecosystems and Environment 252:42-50. DOI:

Wilczewski E (2004). Effect of fertilization methods on the biomass productivity of non-papilionaceous plants grown as stubble intercrops. Acta Scientiarum Polonorum Agricultura 3(1):139-148. DOI:

Wolde-meskel E, van Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, … Giller KE (2018). Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agriculture, Ecosystems and Environment 261:144-152. DOI:

Wuest SB, Caesar-TonThat TC, Wright SF, Williams JD (2005). Organic matter addition, N, and residue burning effects on infiltration, biological, and physical properties of an intensively tilled silt-loam soil. Soil and Tillage Research 84:154-167. DOI:

Xie Z, Zhou C, Shah F, Iqbal A, Ni G (2018). The role of Chinese Milk Vetch as cover crop in complex soil nitrogen dynamics in rice rotation system of South China. Scientific Reports 8(1):12061. DOI:

Yachi S, Loreau M (1999). Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceeding of the National Academy of Sciences 96:1463-1468. DOI:

Yadav IC, Linthoingambi Devi N, Li J, Syed JH, Zhang G, Watanabe H (2017). Biomass burning in Indo-China peninsula and its impacts on regional air quality and global climate change- a review. Environmental Pollution 227:414-427. DOI:

Yang YJ, Dungan RS, Ibekwe AM, Valenzuela C, Crohn DM, Crowley DE (2003). Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils 38:273-281. DOI:

Yang Z-P, Xu M-G, Zheng S-X,Nie J, Gao J-S, Liao Y-L, Xie J (2012). Effects of long-term winter planted green manure on physical properties of reddish paddy soil under a double-rice cropping system. Journal of Integrative Agriculture 11(4):655-664. DOI:

Yang Y, Hu Y, Shahrajabian MH, Ren C, Guo L, Wang C, Zang Z (2017). Organic matter, protein percentage, yield, competition and economics of oat-soybean and oat-groundnut intercropping systems in Northern China. Cercetari Agronomice in Moldova 50(3):25-35. DOI:

Yang Y, Hu Y-G, Shahrajabian MH, Ren C-Z, Guo L-C, Wang C-L, Zing Z-H (2018). Changes in dry matter, protein percentage and organic matter of soybean-oat and groundnut-oat intercropping in different growth stages in Jilin province, China. Acta Agriculturae Slovenica 111(1):33-39. DOI:

Yang W, Feng G, Adeli A, Kersebaum KC, Jenkins JN, Li P (2019). Long-term effect of cover crop on rainwater balance components and use efficiency in the no-tilled and rainfed corn and soybean rotation system. Agricultural Water Management 219:27-39. DOI:

Yao Z, Zhang D, Yao P, Zhao N, Liu N, Zhai B, … Gao Y (2017). Coupling life-cycle assessment and the RothC model to estimate the carbon footprint of green manure-based wheat production in China. Science of the Total Environment 607-608:433-442. DOI:

Yao ZY, Wang Z, Li J, Bedoussac L, Zhang SQ, Li YY, … Gao YJ (2018). Screen for sustainable cropping systems in the rain-fed area on the Loess Plateau of China. Soil and Tillage Research 176:26-35. DOI:

Yao Z, Zhang D, Liu N, Yao P, Zhao N, Li Y, … Gao Y (2019). Dynamics and sequestration potential of soil organic carbon and total nitrogen stocks of leguminous green manure-based cropping systems on the Loess Plateau of China. Soil and Tillage Research 191:108-116. DOI:

Yin S, Wang X, Zhang X, Zhang Z, Xiao Y, Tani H, Sun Z (2019). Exploring the effects of crop residue burning on local haze pollution in Northeast China using ground and satellite data. Atmospheric Environment 199:189-201. DOI:

Yin S, Wang X, Zhang X, Guo M, Miura M, Xiao Y (2019). Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016. Environmental Pollution 254:112949. DOI:

Yu M, Yuan X, He Q, Yu Y, Cao K, Yang Y, Zhang W (2019). Temporal-spatial analysis of crop residue burning in China and its impact on aerosol pollution. Environmental Pollution 245:616-626. DOI:

Zahran HH (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63(4):968-989. DOI:

Zhang J, Quine TA, Ni S, Ge F (2006). Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion. Global Change Biology 12:1834-1841. DOI:

Zhang D, Hui D, Luo Y, Zhou G (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1:85-93. DOI:

Zhang Z, Engling G, Lin C, Chou CC, Lung SC, Chang S, Fan S, et al. (2010). Chemical speciation, transport and contribution of biomass burning smoke to ambient aerosol in Guangzhou, a mega city of China. Atmospheric Environment 26:3187-3195. DOI:

Zhang L, Liu Y, HaoL (2016). Contribution of open crop straw burning emissions to PM2.5 concentrations in China. Environmental Research Letters 11(1):014014. DOI:

Zhang L-P, Zhang S-W, Zhou Z-M, Hou S, Huang Y-F, Cao W-D (2016). Spatial distribution prediction and benefits assessment of green manure in the Pinggu District, Beijing, based on the CLUE-S model. Journal of Integrative Agriculture 15(2):465-474. DOI:

Zhang HF, Hu J, Qi YX, Li CL, Chen JM, Wang XM, … Chai FH (2017). Emission characterization, environmental impact and control measure of PM2.5 emitted from agricultural crop residue burning in China. Journal of Cleaner Production 149:629-635. DOI:

Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X, … Deng Y (2017). Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry 104:208-217. DOI:

Zhang G, Wang X, Zhao H, Sun B, Lu F, Hu L (2017). Extension of residue retention increases net greenhouse gas mitigation in China’s croplands. Journal of Cleaner Production 165:1-12. DOI:

Zhang D, Yao P, Zhao N, Cao W, Zhang S, Li Y, Huang D, Zhai B, Wang Z, Gao Y (2019). Building up the soil carbon pool via the cultivation of green manure crops in the Loess Plateau of China. Geoderma 337:425-433. DOI:

Zhang X, Lu Y, Wang Q, Qian X (2019). A high-resolution inventory of air pollutant emissions from crop residue burning in China. Atmospheric Environment 213:207-214. DOI:

Zheng M, Wang F, Hagler GSW, Hou X, Bergin M, Cheng Y, … Zhang YH (2011). Sources of excess urban carbonaceous aerosol in the pearl river Delta region, China. Atmospheric Environment 45:1175-1182. DOI:

Zhou J, Gu B, Schlesinger WH, Ju X (2016). Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports 6:25088. DOI:

Zhou L, Baker KR, Napelenok SL, Pouliot G, Elleman R, O,Neill SM, Urbanski SP, Wong DC (2018). Modeling crop residue burning experiments to evaluate smoke emissions and plume transport. Science of the Total Environment 627: 523-533. DOI:

Zhou T, Jiao K, Qin S, Lyu D (2019). The impact of cover shoot decomposition on soil microorganisms in an apple orchard in northeast China. Saudi Journal of Biological Sciences 26:1936-1942. DOI:

Zhou G, Gao S, Lu Y, Liao Y, Nie J, Cao W (2020). Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil and Tillage Research 197:104499. DOI:

Zhu B, Yi L, Guo L, Chen G, Hu Y, Tang H, … Zing Z (2012). Performance of two winter cover crops and their impacts on soil properties and two subsequent rice crops in Dongting Lake Plain, Hunan, China. Soil and Tillage Research 124:95-101. DOI:



How to Cite

SUN, W., & SHAHRAJABIAN, M. H. (2022). The effectiveness of Rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(2), 12560.



Review Articles
DOI: 10.15835/nbha50212560