Exploring biofertilizer potential of plant growth-promoting rhizobacteria Bacillus clausii strain B8 (MT305787) on Brassica napus and Medicago sativa


  • Hakima OULEBSIR-MOHANDKACI University M’hamed Bougara of Boumerdes, Faculty of Sciences, Laboratory of Valorisation and Conservation of Biological Resources
  • Farida BENZINA-TIHAR University M’hamed Bougara of Boumerdes, Faculty of Sciences, Laboratory of Valorisation and Conservation of Biological Resources
  • Rima HADJOUTI University M’hamed Bougara of Boumerdes, Faculty of Sciences, Laboratory of Valorisation and Conservation of Biological Resources




Bacillus clausii, Brassica napus, growth promoting, Medicago sativa, Rhizobacteria


DOI: 10.15835/nbha49412484

Plant Growth Promoting Rhizobacteria (PGPR) are soil bacteria that can stimulate plant growth by supplying substances that are usually in limited quantities in the soil especially phosphorous, nitrogen and growth hormone such as indole acetic acid (AIA). These bacteria can also slow the growth of plant pathogens through the production of several antimicrobial metabolites. To investigate the role of rhizobacteria as a biostimulant agent a novel bacterium B8, isolated from the rhizospheric soil of medlar (Mespilus germanica L.- Family Rosaceae), was evaluated on Brassica napus and Medicago sativa. In addition to the classical methods of identification (physiological and biochemical tests), B8 was identified by 16S rRNA gene sequencing as Bacillus clausii. The ability of the strain to produce lytic enzymes such as cellulases, chitinases, pectinases, and phospholipases was studied.  Furthermore, the strain B8 was tested for the capability to produce plant growth metabolites like phosphatases and phytases in order to solubilize inorganic phosphate and production of siderophores, cyanhydric acid (HCN) and indole-3-acetic acid. The strain was able to produce lytic enzymes, with an intense production of siderophores and to solubilize inorganic phosphate. Result of in vivo experiments indicated that the application of B8 at 107 CFU/mL, improved markedly the germination rate of rapeseed, whereas alfalfa seeds treated with the same strain showed a lower germination rate than the controls. The vegetative growth parameters; Roots length, lateral roots number, stem length, number of leaves, diameters of stems and plant weight were significantly improved. We also noted capacity of bacteria to colonize root systems of both plants B. napus and M. sativa in one week of inoculation.  The overall results of this study showed that B clausii B8 has a great potential to be commercialized as a biostimulant agent and provide promising new option for sustainable agriculture.


Metrics Loading ...


Abdel Latef AAH, Omer AM, Badawy AA, Osman MS, Ragae MM (2021). Strategy of salt tolerance and interactive impact of Azotobacter chroococcum and/or Alcaligenes faecalis inoculation on canola (Brassica napus l.) plants grown in saline soil. Plants 10:110. https://doi.org/10.3390/plants10010110

Akinrinlola RJ, Yuen GY, Drijber RA, Adesemoye AO (2018). Evaluation of Bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Hindawi International Journal of Microbiology V 5686874:11. https://doi.org/10.1155/2018/5686874

Ayantola KJ, Fagbohun ED (2020). Enzymatic activity of Rhizobacillus isolated from tomato rhizosphere. Asian Journal of Biochemistry, Genetics and Molecular Biology 4(3):11-19. https://doi.org/10.9734/ajbgmb/2020/v4i330106.

Berendsen RL, Pieterse CMJ, Bakker PAHM (2012). The rhizosphere microbiome and plant health. Trends in Plant Science 17(8):478-486. https://doi.org/10.1016/j.tplants.2012.04.001

Bric J, Bostock R, Silverstonet A (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57(2):535-538. https://doi.org/10.1128/AEM.57.2.535-538.1991

Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A (2021). Microbial biostimulants as response to modern agriculture needs: composition, role and application of these innovative products. Plants 10:1533. https://doi.org/10.3390/plants10081533

Cooksey DA, Azad HR, Cha JS, Lim CK (1990): Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Applied Environmental Microbiology 56:431-435.

De la Vega LM, Barboza-Corona JE, Aguilar-Uscanga MG, Ramírez-Lepe M (2009). Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi. Canadian Journal of Microbiology 52(7). https://doi.org/10.1139/w06-019

De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2009). Bergey’s Manual of Systematic Bacteriology, 2nd Ed. The Firmicute. Springer, New York 3:63-67.

Dommergues Y, Mangenot F (1985). Ecologie microbienne du sol. Paris, Ed. Masson, pp 769.

Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.

Filiz O, Takil E, Kayan N (2021). The role of plant growth promoting rhizobacteria (PGPR) and phosphorus fertilization in improving phenology and physiology of bean (Phaseolus vulgaris L.). Applied Ecology and Environmental Research 19(3):2507-2517. https://doi.org/10.15666/aeer/1903_25072517

Goldman E, Green LH (2008). Practical handbook of microbiology. Second Edition, pp 306-326.

Guiraud JP (1998). Microbiologie alimentaire [Food microbiology]. Ed. Dunod, Paris, pp 652.

Guiraud JP (2003). Microbiologie Alimentaire [Food microbiology]. Ed. Dunod. Paris, pp 136-139.

Guo DL, Wan B, Xiao SJ, Allen S, Gu YC, Ding L, … Zhou Y (2016). Cyclic lipopeptides with herbicidal and insecticidal activities produced by Bacillus clausii DTM1. Natural Product Communications 10(12):2151-2153. https://doi.org/10.1177/1934578X1501001235

Gupta A, Gopal M (2008). Siderophore production by plant growth promoting rhizobacteria. Indian Journal of Agricultural Research 42(2):153-156.

Gurtler V, Stanisich VA (1996). Microbiology 142:3-16. https://doi.org/10.1099/13500872-142-1-3

Jang JH, Kim SH, Khaine I, Kwak MJ, Lee HK, Lee TY, Woo SY (2018). Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS. Photosynthetica 56(4):1188-1203.‏ https://doi.org/10.1007/s11099-018-0801-0

Joffin JN, Leyral G (2006). Microbiologie technique [Technical microbiology]. TI-Dictionnaire des techniques. 4eme édition. Bordeaux: CRDP d’aquitaine, pp 368.

Karungu S, Huang D, Atoni E, Waruhiu C, Agwanda B, Hu X, Yuan Z (2018). Isolation, identification and evaluation of mosquito entomopathogenic Bacillus species and related genera from randomly selected sites in Kenya. African Journal of Microbiology Research 12(12):290-299. https://doi.org/10.5897/AJMR2018.8824

Kumar P, Dubey RC, Maheshwari DK (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research 167(8):493-499. https://doi.org/10.1016/j.micres.2012.05.002

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549.

Kutlu M, Cakmakci R, Hosseinpour A, Karagöz H (2019). The use of plant growth promoting rhizobacteria (PGPR)’s effect on essential oil rate, essential oil content, some morphological parameters and nutrient uptake of Turkish oregano. Applied Ecology and Environmental Research 17(2):1641-1653. http://dx.doi.org/10.15666/aeer/1702_16411653

Lemaire G, Giroud B, Bathily B, Lecomte P, Christian Corniaux C (2019). Toward integrated crop-livestock systems in West Africa: a project for dairy production along Senegal River. In: Lemaire G, De Faccio Carvalho PC, Kronberg S, Recous S (Eds). Agroecosystem Diversity. Academic Press, pp 275-285. https://doi.org/10.1016/B978-0-12-811050-8.00017-0

Li Z, Bai Z, Zhang B, Li B, Jin B, Zhang M, Lin F, Zhang H (2021). Purification and characterization of alkaline pectin lyase from a newly isolated Bacillus clausii and its application in elicitation of plant disease resistance. Applied Biochemistry and Biotechnology 167(8):2241-2256. https://doi.org/10.1007/s12010-012-9758-9.

Li Y, Shao J, Xie Y, Jia L, Fu Y, Xu Z, Zhang R (2021). Volatile compounds from beneficial rhizobacteria Bacillus spp. promote periodicateral root development in Arabidopsis. Plant, Cell & Environment 44(5):1663-1678.

Logan NA, De Vos P (2009). Genus I. Bacillus. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (Eds). Bergey’s Manual of Systematic Bacteriology, 2nd Edition. Springer, New York 3:121-128.

Lynch JM, Brimecombe MJ, De Leij FA (2001). Rhizosphere. eLS. https://doi.org/10.1038/npg.els.0000403.

McGregor DI, Kimber DS (1995). Brassica oilseeds: production and utilization. CAB International, pp 394.

Mehta S, Nautiyal CS (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology 43(1):51-56. https://doi.org/10.1007/s002840010259

Meyer JM, Abdellah MA (1978). The florescent pigment of Pseudomonas fluorescens biosynthesis, purification and physical-chemical properties. Journal of General Microbiology 107:319-328. https://doi.org/10.1099/00221287-107-2-319

Mushtaq Z, Nighat F (2019). In vitro antimicrobial and antioxidant activities of organic and aqueous extracts of Bacillus clausii KP10. Journal- Chemical Society of Pakistan 41(1):161-168.

Naik PR, Sakthivel N (2009). Functional characterization of a novel hydrocarbonoclastic Pseudomonas sp. strain PUP6 with plant-growth-promoting traits and antifungal potential. Research in Microbiology 157(6):538-546. https://doi.org/10.1016/j.resmic.2005.11.009

Oulebsir-MohandKaci H, Benzina-Tihar F, AitBelkacem C, Belgrade AN (2020). Recherche de molécules bioactives d’intérêt à partir d’une collection de souches bactériennes rhizosphèriques et étude de leur effet antifongique [Search for bioactive molecules of interest from a collection of rhizospheric bacterial strains and study of their antifungal effect]. Algerian Journal of Environmental Science and Technology 6(3):1457-1465.

Oulebsir-Mohand Kaci H, Benzina-Tihar F, Ismael MM, Selmani S, Koribeche N (2021). Bacillaceae as Entomopathogenic: A review. Egyptian Journal of Plant Protection Research 9(1):15-38.

Pandey LM, Palni LM (1997). Bacillus species: the dominant bacteria of the rhizosphere of established tea bushes. Microbiological Research 52(4):359-365. https://doi.org/10.1016/S0944-5013(97)80052-3

Prescott LM, Harley JP, Klein DA (2003). Microbiologie. Ed De Boeck, Bruxelles.

Rani MS, Madar IH, Al Ssadh H, Ogu GI, Tayubi IA (2008). Biochemical and phenotypic profiling of Bacillus clausii: a potent commercial probiotic. International Journal of Scientific Innovations 5(03):099-106. https://doi.org/10.32594/IJSI_20180503

Raut LS, Hamde VS (2018). In vitro antagonism of resident rhizobacteria, Bacillus amyloliquefaciens subsp. amyloliquefaciens against the bacterial blight pathogen of Bt cotton. International Journal of Pharm Bio Sciences 8:611-618.

Saitou N, Nei M (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Salazar-Ramirez MT, Saenz-Mata J, Preciado-Rangel P, Fortis-Hernandez M, Eueda-Puente EO, Yescas-Coronado P, Orozco-Vidal JA (2021). Plant growth-promoting rhizobacteria associated to Candelilla rhizosphere (Euphorbia antisyphilitica) and its effects on Arabidopsis thaliana seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(2):12294. https://doi.org/10.15835/nbha49212294

Sambrook J, Fritsch E, Maniatis T (1989). Molecular Cloning. A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

Senthilkumar M, Swarnalakshmi K, Govindasamy V, Lee YK, Annapurna K (2009). Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Current Microbiology 58(4):288-293. https://doi.org/10.1007/s00284-008-9329-z

Singh N, Pandey P, Dubey RC, Maheshwari DK (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology & Biotechnology 24(9):1669-1679. https://doi.org/10.1007/s11274-008-9680-z

Singleton P (2005) Bactériologie pour la médecine. La biologie et la Biotechnologie [Biology and Biotechnology]. Ed. Dunod. Paris, pp 541.

Stecher G, Tamura K, and Kumar S (2020). Molecular evolutionary genetics analysis (MEGA) for macOS. Molecular Biology and Evolution 37(4):1237-1239. https://doi.org/10.1093/molbev/msz312

Stein T (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology 56(4):845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x

Swarnalakshmi K, Yadav V, Tyagi D, Dhar DW, Kannepalli A, Kumar S (2020). Significance of plant growth promoting rhizobacteria in grain legumes: growth promotion and crop production. Plants 9:1596. https://doi.org/10.3390/plants9111596

Tamura K, Nei M, and Kumar S (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035. https://doi.org/10.1073/pnas.0404206101

Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007). Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal 37(1):1-20. https://doi.org/10.1016/j.bej.2007.05.012

Verma RK, Sachan M, Vishwakarma K, Upadhyay N, Mishra RK, Tripathi DK, Sharma S (2018). Role of PGPR in sustainable agriculture: molecular approach toward disease suppression and growth promotion. In: Role of Rhizospheric microbes in soil. Springer, Singapore, pp 259-290. https://doi.org/10.1007/978-981-13-0044-8_9

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991

Yasmin H, Naz R, Nosheen A, Hassan MN, Ilyas N, Sajjad M, Anjum S, Gao X, Geng Z (2020). Identification of new biocontrol agent against charcoal rot disease caused by Macrophomina phaseolina in soybean (Glycine max L.). Sustainability 12:6856. https://doi.org/10.3390/su12176856

Wang Z, Li Y, Zhuang L, Yu Y, Liu J, Zhang L (2019). A rhizosphere-derived consortium of Bacillus subtilis and Trichoderma harzianum suppresses common scab of potato and increases yield. Computational and Structural Biotechnology Journal 645-653. https://doi.org/10.1016/j.csbj.2019.05.003




How to Cite

OULEBSIR-MOHANDKACI, H., BENZINA-TIHAR, F., & HADJOUTI, R. (2021). Exploring biofertilizer potential of plant growth-promoting rhizobacteria Bacillus clausii strain B8 (MT305787) on Brassica napus and Medicago sativa. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 12484. https://doi.org/10.15835/nbha49412484



Research Articles
DOI: 10.15835/nbha49412484