Physiological and biochemical responses of argan (Argania spinosa (L.)) seedlings from containers of different depths under water stress

Authors

  • Ouswati SAID ALI Cadi Ayyad University, Faculty of Sciences, Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Semlalia, 40000 Marrakesh (MA)
  • Abdouroihamane HACHEMI Cadi Ayyad University, Faculty of Sciences, Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Semlalia, 40000 Marrakesh (MA) https://orcid.org/0000-0002-3199-7021
  • Aicha MOUMNI Cadi Ayyad University, Faculty of Sciences, Laboratory of Fluid Mechanics and Energetics, Semlalia, 40000 Marrakesh (MA) https://orcid.org/0000-0002-0203-8462
  • Tarik BELGHAZI Regional Forestry Research Center of Marrakesh, 40000 Marrakesh (MA) https://orcid.org/0000-0002-0436-4608
  • Abderrahman LAHROUNI Cadi Ayyad University, Faculty of Sciences, Laboratory of Fluid Mechanics and Energetics, Semlalia, 40000 Marrakesh (MA) https://orcid.org/0000-0002-2118-8570
  • Said EL MESSOUSSI Cadi Ayyad University, Faculty of Sciences, Laboratory of Pharmacology, Neurobiology, Anthropobiology, and Environment, Semlalia, 40000 Marrakesh (MA) https://orcid.org/0000-0002-9557-2196

DOI:

https://doi.org/10.15835/nbha49412482

Keywords:

Argania spinosa, biochemical characteristics, container depth, physiological characteristics, water stress

Abstract

DOI: 10.15835/nbha49412482

Plant species characteristic of arid and semi-arid zones, such as Argania spinosa (L.) Skeels, have a taproot that allows them to reach the soil horizons more quickly. Unfortunately, in the nursery, the containers of culture used for the production of seedlings do not support an excellent development of the root architecture that can be able to resist the shock of transplantation, in particular of the hydric stress. This study aimed to evaluate the physiological and biochemical behavior of Argania spinosa seedlings grown in containers of different depths under water stress. An experiment was conducted with 90 seedlings from the different containers (P1 for depth of 16 cm, P2 for depth of 30 cm, and P3 for depth of 60 cm), and three watering treatments (well-watered 100% of field capacity, moderate stress with 50% of field capacity and severe stress with 25% of the field capacity). Our results showed that seedlings from the 16 cm container had lower values of water status. Malondialdehyde content, electrolyte leakage, hydrogen peroxide, and superoxide radical content gave higher values on seedlings from the shallow container. The benefits of increasing the container depth of nursery seedlings contribute to the improvement of physiological and biochemical responses of seedlings under water stress. To fully validate our findings, a long-term field study must be conducted.

Metrics

Metrics Loading ...

References

Aphalo P, Rikala R (2003). Field performance of silver-birch planting-stock grown at different spacing and in containers of different volume. New Forests 25: 93-108. https://doi.org/10.1023/A:1022618810937

Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1‑15.

Ashraf M, Harris PJC (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science 166:3-16. https://doi.org/10.1016/j.plantsci.2003.10.024

Bainbridge DA (2012). Using tree shelters as deep containers. Tree Planters’ Notes 55:49-54.

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207.

Beauchamp C, Fridovich I (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44:276-287. https://doi.org/10.1016/0003-2697(71)90370-8

Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhris M, Ben Abdallah F (2009). Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environmental and Experimental Botany 67:345-352. https://doi.org/10.1016/j.envexpbot.2009.07.006

Bengough AG, McKenzie BM, Hallett PD, Valentine TA (2011). Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany 62:59-68. https://doi.org/10.1093/jxb/erq350

Bradford M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Chakhchar A (2015). Mécanismes physiologiques et biochimiques de la tolérance de l’arganier au stress hydrique [Physiological and biochemical mechanisms of the tolerance of the argan tree to water stress]. PhD thesis, Faculty of Science and Technology Marrakesh, Cadi Ayyad University, Morocco.

Chakhchar A, Wahbi S, Lamaoui M, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, Filali-Maltouf A, El Modafar C (2015). Physiological and biochemical traits of drought tolerance in Argania spinosa. Journal of Plant Interactions 10:252-261. https://doi.org/10.1080/17429145.2015.1068386

Chirino E, Vilagrosa A, Hernández EI, Matos A, Vallejo VR (2008). Effects of a deep container on morpho-functional characteristics and root colonization in Quercus suber L. seedlings for reforestation in Mediterranean climate. Forest Ecology and Management 256:779-785. https://doi.org/10.1016/j.foreco.2008.05.035

Comas LH, Becker SR, Cruz VM V., Byrne PF, Dierig DA (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science 4:1-16. https://doi.org/10.3389/fpls.2013.00442

Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G (2016). Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiologia Plantarum 157:69-84. https://doi.org/10.1111/ppl.12402

De La Fuente LM, Ovalle JF, Arellano EC, Ginocchio R (2017). Use of alternative containers for promoting deep rooting of native forest species used for dryland restoration: The case of Acacia caven. IForest 10:776-782. https://doi.org/10.3832/ifor2101-010

Defaa C, Elantry S, El Alami SL, Achour A, El Mousadik A, Msanda F (2015). Effects of tree shelters on the survival and growth of Argania spinosa seedlings in Mediterranean arid environment. International Journal of Ecology 2015:1-6. https://doi.org/10.1155/2015/124075

Deligoz A, Gur M (2015). Morphological, physiological and biochemical responses to drought stress of Stone pine (Pinus pinea L.) seedlings. Acta Physiologiae Plantarum 37:1-8. https://doi.org/10.1007/s11738-015-1998-1

Dominguez-Lerena S, Herrero Sierra N, Carrasco Manzano I, Ocaña Bueno L, Peñuelas Rubira JL, Mexal JG (2006). Container characteristics influence Pinus pinea seedling development in the nursery and field. Forest Ecology and Management 221:63-71. https://doi.org/10.1016/j.foreco.2005.08.031

Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1956). A colorimetric method for the determination of sugars and related substances. Annals of Chemistry 28:350-356.

El Mrabet S, Ouahmane L, El Mousadik A, Msanda F, Abbas Y (2014). The effectiveness of arbuscular mycorrhizal inoculation and bio-compost addition for enhancing reforestation with Argania spinosa in Morocco. Open Journal of Forestry 04:14-23. https://doi.org/10.4236/ojf.2014.41003

Fassnacht FE, Stenzel S, Gitelson AA (2015). Non-destructive estimation of foliar carotenoid content of tree species using merged vegetation indices. Journal of Plant Physiology 176:210-217. https://doi.org/10.1016/j.jplph.2014.11.003

Ferradous A (2018). Optimisation de la production de plants d’arganier (Argania spinosa (L.) Skeels) en pépinière [Optimization of argan tree (Argania spinosa (L.) Skeels) nursery production]. PhD thesis, Faculty of Science Semlalia Marrakesh, Cadi Ayyad University, Morocco.

Garnier E, Shipley B, Roumet C, Laurent G (2001). A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology 15:688-695. https://doi.org/10.1046/j.0269-8463.2001.00563.x

Hachemi A, Said Ali O, Belghazi T, Lahrouni A, El Mercht S, El Hassan C, El Messoussi S (2021). Effect of hydric and light stress on biomass, nutrient uptake and enzymatic antioxidants of Argania spinosa seedlings. Archives of Biological Sciences 73:145-153. https://doi.org/10.2298/ABS201220010H

Hernández JA, Almansa MS (2002). Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologia Plantarum 115:251-257. https://doi.org/10.1034/j.1399-3054.2002.1150211.x

Hessini K, Martínez JP, Gandour M, Albouchi A, Soltani A, Abdelly C (2009). Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environmental and Experimental Botany 67:312-319. https://doi.org/10.1016/j.envexpbot.2009.06.010

Jafarnia S, Akbarinia M, Hosseinpour B, Modarres Sanavi SA, Salami SA (2018). Effect of drought stress on some growth, morphological, physiological, and biochemical parameters of two different populations of Quercus brantii. IForest 11:212-220. https://doi.org/10.3832/ifor2496-010

Kocheva K, Lambrev P, Georgiev G, Goltsev V, Karabaliev M (2004). Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. Bioelectrochemistry 63:121-124. https://doi.org/10.1016/j.bioelechem.2003.09.020

León MF, Squeo FA, Gutiérrez JR, Holmgren M (2011). Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert. Journal of Vegetation Science 22:120-129. https://doi.rog/10.1111/j.1654-1103.2010.01224.x

Lin J, Zhang R, Hu Y, Song Y, Hänninen H, Wu J (2019). Interactive effects of drought and shading on Torreya grandis seedlings: physiological and growth responses. Trees - Structure and Function 33:951-961. https://doi.org/10.1007/s00468-019-01831-8

Markesteijn L, Poorter L (2009). Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. Journal of Ecology 97:311-325. https://doi.org/10.1111/j.1365-2745.2008.01466.x

Moore BM, Flurkey WH (1990). Sodium dodecyl sulfate activation of a plant polyphenoloxidase. Effect of sodium dodecyl sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. Journal of Biological Chemistry 265:4982-4988. https://doi.org/10.1016/s0021-9258(19)34072-4

Morkunas I, Ratajczak L (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum 36:1607-1619. https://doi.org/10.1007/s11738-014-1559-z

Msanda F, El Aboudi A, Peltier JP (2005). Biodiversité et biogéographie de l’arganeraie marocaine. Agricultures (Montrouge) 14:357-364.

Muñoz JC, Miranda EC, César J, Burgos V, Ríos P, Martínez VC, Llisto JM, Oswaldo R (2014). Efectos del uso de contenedor profundo en Quercus suber. Resultados preliminares de un proyecto de transferencia de tecnologia (sierra calderona, Espana) [Effects of the use of deep containers on Quercus suber. Preliminary results of a technology transfer project (Sierra Calderona, Spain).]. Revista Amazonica Ciencia y Tecnologia 3:140-160.

Nayyar H (2003). Accumulation of osmolytes and osmotic adjustment in water-stressed wheat (Triticum aestivum) and maize (Zea mays) as affected by calcium and its antagonists. Environmental and Experimental Botany 50:253-264. https://doi.org/10.1016/S0098-8472(03)00038-8

Nogués S, Baker NR (2000). Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. Journal of Experimental Botany 51:1309-1317. https://doi.org/10.1093/jxb/51.348.1309

Ovalle JF, Arellano EC, Ginocchio R (2015). Trade-offs between drought survival and rooting strategy of two South American Mediterranean tree species: Implications for dryland forests restoration. Forests 6:3733-3747. https://doi.org/10.3390/f6103733

Pemán J, Voltas J, Gil-Pelegrin E (2006). Morphological and functional variability in the root system of Quercus ilex L. subject to confinement: Consequences for afforestation. Annals of Forest Science 63:425-430. https://doi.org/10.1051/forest:2006022

Pita P, Cañas I, Soria F, Ruiz F, Toval G (2005). Use of physiological traits in tree breeding for improved yield in drought-prone environments. The case of Eucalyptus globulus. Investigación Agraria: Sistemas y Recursos Forestales 14:383. https://doi.org/10.5424/srf/2005143-00931

Rivero RM, Ruiz JM, Garcıa PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001). Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science 160:315-321.

Santos C, Fragoeiro S, Phillips A (2005). Physiological response of grapevine cultivars and a rootstock to infection with Phaeoacremonium and Phaeomoniella isolates: An in vitro approach using plants and calluses. Scientia Horticulturae 103:187-198. https://doi.org/10.1016/j.scienta.2004.04.023

Saura-Mas S, Lloret F (2007). Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies. Annals of Botany 99:545-554. https://doi.org/10.1093/aob/mcl284

Sayfzadeh S, Habibi D, Taleghani DF, Kashani A, Vazan S, Qaen SHS, Khodaei AH, Boojar MMA, Rashidi M (2011). Response of antioxidant enzyme activities and root yield in sugar beet to drought stress. International Journal of Agriculture and Biology 13:357-362.

Shi H, Ye T, Song B, Qi X, Chan Z (2015). Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Acta Physiologiae Plantarum 37:1-12. https://doi.org/10.1007/s11738-015-1873-0

Smirnoff N (1993). The role of active oxygen in the response of plants to water deficit and desiccation. The New Phytologist 125:27-58.

Szabados L, Savouré A (2010). Proline: a multifunctional amino acid. Trends in Plant Science 15:89-97. https://doi.org/10.1016/j.tplants.2009.11.009

Talbi S, Romero-Puertas MC, Hernández A, Terrón L, Ferchichi A, Sandalio LM (2015). Drought tolerance in a Saharan plant Oudneya africana: Role of antioxidant defences. Environmental and Experimental Botany 111:114-126. https://doi.org/10.1016/j.envexpbot.2014.11.004

Velikova V, Yordanov I, Edreva A (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Sciences Végétales 151:59-66. https://doi.org/10.1103/PhysRev.176.1709

Wahbi S, Wakrim R, Aganchich B, Tahi H, Serraj R (2005). Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate: I. Physiological and agronomic responses. Agriculture, Ecosystems and Environment 106:289-301. https://doi.org/10.1016/j.agee.2004.10.015

Zine El Abidine A, Bouderrah M, Bekkour A, Lamhamedi MS, Abbas Y (2016). Croissance et développement des plants de deux provenances de chêne-liège produits en pépinière dans des conteneurs de différentes profondeurs [Growth and development of seedlings of two cork oak provenances produced in nursery in containers of different depths]. Forêt Méditerranéenne t. XXXVII 2:137-150.

Downloads

Published

2021-11-02

How to Cite

SAID ALI, O., HACHEMI, A., MOUMNI, A., BELGHAZI , T. ., LAHROUNI , A. ., & EL MESSOUSSI, S. (2021). Physiological and biochemical responses of argan (Argania spinosa (L.)) seedlings from containers of different depths under water stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 12482. https://doi.org/10.15835/nbha49412482

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49412482