The roles of a light-dependent protochlorophyllide oxidoreductase (LPOR), and ATP-dependent dark operative protochlorophyllide oxidoreductase (DPOR) in chlorophyll biosynthesis

  • Wenli SUN Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081 (CN)
  • Mohamad H. SHAHRAJABIAN Chinese Academy of Agricultural Sciences, Biotechnology Research Institute, Beijing 100081 (CN)
  • Qi CHENG State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, College of Life Sciences, Baoding, Hebei 071000, China; Global Alliance of HeBAU-CLS&HeQiS for BioAl-Manufacturing, College of Life Sciences, Hebei Agricultural University, Baoding, 071000 (CN)
Keywords: chlorophyll, chlorophyllide, DPOR, LPOR, protochlorophyllide oxidoreductase

Abstract

Chlorophyll is a green photosynthetic pigment, and photosynthesis drives the global carbon cycle. The reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) in the penultimate stage of biosynthesis of chlorophyll (Chl) is catalyzed by light-independent protochlorophyllide reducatse (DPOR), and the light-dependent protochlorophyllide oxidoreductase (LPOR). The search was done to all manuscript sections according to terms chlorophyll, a light-dependent protochlorophyllide oxidoreductase, ATP-dependent dark operative protochlorophyllide oxidoreductase, chlorophyll, photosynthesis and chlorophyllide. Within the framework of photosynthesis and chlorophyll, this review article was aimed to provide an overview of the functional studies in chlorophyll biosynthesis, protein crystal structure, disclosure of action mechanisms, and possible future available direction of LPOR and DPOR in the biosynthesis of chlorophyll.

Metrics

Metrics Loading ...

References

Adamson HY, Hiller RG, Walmsley J (1997). Protochlorophyllide reduction and greening in angiosperms: an evolutionary perspective. Journal of Photochemistry and Photobiology B: Biology 41:201-221. https://doi.org/10.1016/s1011-1344(97)00105-x

Armstrong GA (1998). Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. Journal of Photochemistry and Photobiology B: Biology 43:87-100. https://doi.org/10.1016/s1011-1344(98)00063-3

Armstrong GA, Apel K, Rudiger W (2000). Does a light-harvesting protochlorophyllide a/b-binding protein complex exist? Trends in Plant Science 5(1):40-44. https://doi.org/10.1016/s1360-1385(99)01513-7

Aronsson H, Sundqvist C, Dahlin C (2003). POR hits the road: import and assembly of a plastid protein. Plant Molecular Biology 51:1-7. https://doi.org/10.1023/a:1020795415631

Beigbeder A, Vavadakis M, Navakoudis E, Kotzabasis K (1995). Influence of polyamine inhibitors on light-independent and light-dependent chlorophyll biosynthesis and on the photosynthetic rate. Journal of Photochemistry and Photobiology B: Biology 28:235-242. https://doi.org/10.1016/1011-1344(95)07113-g

Belyaeva OB, Litvin FF (2007). Photoactive pigment-enzyme complexes of chlorophyll precursor in plant leaves. Biochemistry (Moscow) 72:1458-1477. https://doi.org/10.1134/s0006297907130044

Berska J, Mysliwa-Kurdziel B, Strzalka K (2001). Transformation of protochlorophyllide to chlorophyllide in wheat under heavy metal stress. In: Proceedings of the 12th International Congress on Photosynthesis, CSIRO, pp. S2-015.

Bjorn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009). A viewpoint: why chlorophyll a? Photosynthesis Research 99:85-98. https://doi.org/10.1007/s11120-008-9395-x

Blomqvist LA, Ryberg M, Sundqvist C (2008). Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. Photosynthesis Research 96:37-50. https://doi.org/10.1007/s11120-007-9281-y

Boddi B, Lindsten A, Ryberg M, Sundqvist C (1989). On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiologia Plantarum 76:135-143. https://doi.org/10.1111/j.1399-3054.1989.tb05622.x

Boddi B, Oravecz AR, Lehoczki E (1995). Effect of cadmium on organization and photoreduction of protochlorophyllide in dark grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31:411-420.

Boddi B, Kis-Petik K, Kaposi AD, Fidy J, Sundqvist C (1998). The two spectroscopically different short wavelength protochlorophyllide forms in pea epicotyls are both monomeric. Biochimica et Biophysica Acta 1365:531-540. https://doi.org/10.1016/s0005-2728(98)00106-6

Bollivar DW (2006). Recent advances in chlorophyll biosynthesis. Photosynthesis Research 90:173-194. https://doi.org/10.1007/s11120-006-9076-6

Brocker MJ, Watzlich D, Uliczka F, Virus S, Saggu M, Lendzian F, Scheer H, Rudiger W, Moser J, Jahn D (2008). Substrate recognition of nitrogenase-like dark operative protochlorophyllide oxidoreductase from Prochlorococcusmarinus. The Journal of Biological Chemistry 283(44):29873-29881. https://doi.org/10.1074/jbc.m805206200

Brocker MJ, Schomburg S, Heinz DW, Jahn D, Schubert WD, Moser J (2010). Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalytic complex (ChlN/ChlB). Journal of Biological Chemistry 285:27336-27345. https://doi.org/10.1074/jbc.m110.126698

Chen M (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry 83:317-340. https://doi.org/10.1146/annurev-biochem-072711-162943

Corless EI, Bennett B, Antony E (2020). Substrate recognition induces sequential electron transfer across subunits in the nitrogenase-like DPOR complex. Journal of Biological Chemistry 295(39):13630-13639. https://doi.org/10.1074/jbc.ra120.015151

Denev ID, Yahubyan GT, Minkov IN, Sundqvist C (2005). Organization of protochlorophyllide oxidoreductase in prolamellar bodies isolated from etiolated carotenoid-deficient wheat leaves as revealed by fluorescence probes. Biochimica et Biophysica Acta 1716:97-103. https://doi.org/10.1016/j.bbamem.2005.09.001

Dietzek B, Tschierlei S, Hanf R, Seidel S, Yartsev A, Schmitt M, Hermann G, Popp J (2010). Dynamics of charge separation in the excited-state chemistry of protochlorophyllide. Chemical Physics Letters 492(1-3):157-163. https://doi.org/10.1016/j.cplett.2010.04.027

Eckhardt U, Grimm B, Hortensteiner S (2004). Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Molecular Biology 56:1-14. https://doi.org/10.1007/s11103-004-2331-3

Frank F, Bereza B, Boddi B (1999). Protochlorophyllide-NADP+ and protochlorophyllide-NADPH complexes and their regeneration after flash illumination in leaves and etioplast membranes dark-grown wheat. Photosynthesis Research 59:53-61.

Frankenberg C, Berry J (2018). Solar induced chlorophyll fluorescence: origins, relation to photosynthesis and retrieval. Comprehensive Remote Sensing 3:143-162. https://doi.org/10.1016/b978-0-12-409548-9.10632-3

Fujita Y (1996). Protochlorophyllide reduction: a key step in the greening of plants. Plant and Cell Physiology 37:411-421. https://doi.org/10.1093/oxfordjournals.pcp.a028962

Fujita Y, Takagi H, Hase T (1998). Cloning of the gene encoding a protochlorophyllide reductase: the physiological significance of the co-existence of light-dependent and –independent protochlorophyllide reduction systems in the Cyanobacterium Plectonema boryanum. Plant and Cell Physiology 39(2):177-185. https://doi.org/10.1093/oxfordjournals.pcp.a029355

Fujita Y, Bauer CE (2000). Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthetic enzyme. Journal of Biological Chemistry 275:23583-23588. https://doi.org/10.1074/jbc.m002904200

Fujita Y, Bauer CE (2003). The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Kadish KM, Smith KM, Guilard R (Eds). Porphyrin Handbook, Chlorophylls and Bilins: Bionsynthesis, Synthesis and Degradation. Vol. 13, Academic Press, New York, pp 109-156. https://doi.org/10.1016/b978-0-08-092387-1.50010-2

Gabruk M, Stecka A, Strzalka W, Kruk J, Strzalka K, Mysliwa-Kurdziel B (2015). Photoactive protochlorophyllide-enzyme complexes reconstituted with PORA, PORB, and PORC proteins of A. thaliana: Fluorescence and catalytic properties. Plos One 10(2):e0116990. https://doi.org/10.1371/journal.pone.0116990

Galperin MY, Walker DR, Koonin EV (1998). Analogous enzymes: independent inventions in enzyme evolution. Genome Research 8:779-790. https://doi.org/10.1101/gr.8.8.779

GarroneA, Archipowa N, Zipfel PF, Hermann G, Dietzek B (2015). Plant protochlorophyllide oxidoreductases A and B – Catalytic efficiency and initial reaction steps. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.m115.663161

Gotoh E, Kobayashi Y, Tsuyama M (2010). The post-illumination chlorophyll fluorescence transient indicates the RuBP regeneration limitation of photosynthesis in low light in Arabidopsis. FEBS Letters 584(14):3061-3064. https://doi.org/10.1016/j.febslet.2010.05.039

Grajek H, Rydzynski D, Piotrowicz-Cieslak A, Herman A, Maciejczyk M, Wieczorek Z (2020). Cadmium ion-chlorophyll interaction-examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition. Chemosphere 261:127434. https://doi.org/10.1016/j.chemosphere.2020.127434

Green BR (2011). After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynthesis Research 107:103-115. https://doi.org/10.1007/s11120-010-9584-2

Grzyb JM, Solymosi K, Strzalka K, Mysliwa-Kurdziel B (2013). Visualization and characterization of prolamellar bodies with atomic force microscopy. Journal of Plant Physiology 170:1217-1227. https://doi.org/10.1016/j.jplph.2013.04.017

Heyes DJ, Hunter CN (2005). Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends in Biochemical Sciences 30(11):642-649. https://doi.org/10.1016/j.tibs.2005.09.001

Humphrey AM (1980). Chlorophyll. Food Chemistry 5(1):57-67. https://doi.org/10.1016/0308-8146(80)90064-3

Hunter CN, Artymiuk PJ, van Amerongen H (1994). Photosynthesis: Many chlorophylls make light work. Current Biology 4(4):344-346. https://doi.org/10.1016/s0960-9822(00)00075-0

Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, Endres S, … Krauss U (2014). Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Molecular Microbiology 93(5):1066-1078. https://doi.org/10.1111/mmi.12719

Knaust R, Seyfried B, Schmidt L, Schulz R, Senger H (1993). Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH: Protochlorophyllide oxidoreductase of barley expressed in Escherichia coli. Journal of Photochemistry and Photobiology B: Biology 20(2-3):161-166. https://doi.org/10.1016/1011-1344(93)80146-z

Kondo T, Nomata J, Fujita Y, Itoh S (2011). EPR study of 1Asp-3Cys ligated 4Fe-4S iron-sulfur cluster in NB-protein (BchN-BchB) of a dark-operative protochlorophyllide reductase complex. FEBS Letters 585:214-218. https://doi.org/10.1016/j.febslet.2010.11.044

Kowalewska L, Mazur R, Suski S, Garstka M, Mostowska A (2016). Three-dimensional visualization of the tubular-lamellar transformation of the internal plastid membrane network during runner bean chloroplast biogenesis. The Plant Cell 28:875-891.https://doi.org/10.1105/tpc.15.01053

Kruk J (2005). Occurrence of chlorophyll precursors in leaves of cabbage heads- the case of natural etiolation. Journal of Photochemistry and Photobiology B: Biology 80:187-194. https://doi.org/10.1016/j.jphotobiol.2005.04.003

Kuroda H, Masuda T, Ohta H, Shioi Y, Takamiya K (1995). Light-enhanced gene expression of NADPH-protochlorophyllide oxidoreductase in cucumber. Biochemical and Biophysical Research Communications 210(2):310-316. https://doi.org/10.1006/bbrc.1995.1662

Kusumi J, Sato A, Tachida H (2006). Relaxation of function constraints on light-independent protochlorophyllide oxidoreductase in Thuja. Molecular Biology and Evolution 23:941-948. https://doi.org/10.1093/molbev/msj097

Li Y, Song H, Zhou L, Xu Z, Zhou G (2019). Vertical distributions of chlorophyll and nitrogen and their associations with photosynthesis under drought and re-watering regimes in a maize field. Agricultural and Forest Meteorology 272-273:40-54. https://doi.org/10.1016/j.agrformet.2019.03.026

Liu X, Li L, Zhang B, Zing L, Li L (2020). AhHDA1-mediated AhGLK1 promoted chlorophyll synthesis and photosynthesis regulates recovery growth of peanut leaves after water stress. Plant Science 294:110461. https://doi.org/10.1016/j.plantsci.2020.110461

Lu X, Liu Z, Zhao F, Tang J (2020). Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis. Remote Sensing of Environment 251:112083. https://doi.org/10.1016/j.rse.2020.112083

Mafakheri A, Siosemardeh A, Bahramnejad B, Struik PC, Sohrabi Y (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science 4(8):580-585.

Mandal R, Dutta G (2020). From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule. Sensors International 1:100058. https://doi.org/10.1016/j.sintl.2020.100058

Masuda T (2008). Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynthesis Research 96:121-143. https://doi.org/10.1007/s11120-008-9291-4

Masuda T, Fujita Y (2008). Regulation and evolution of chlorophyll biosynthesis. Photochemical and Photobiological Sciences 7:1131-1149. https://doi.org/10.1039/b807210h

Maximova N, Slovakova L (2014). Accumulation of photosynthetic pigments in Larix deciduas Mill. and Picea abies (L.) Karst. Cotyledons treated with 5-aminolevulinic acid under different irradiation. Photosynthetica 52(2):203-210. https://doi.org/10.1007/s11099-014-0019-8

Mees A, Klar T, GnauP, Hennecke U, Eker APM, Carell T, Essen L-O (2004). Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306:1789-1793.https://doi.org/10.1126/science.1101598

Menon BRK, Waltho JP, Scrutton NS, Heyes DJ (2009). Cryogenic and laser photoexcitation studies identify multiple roles for active site residues in the light-driven enzyme protochlorophyllide oxidoreductase. The Journal of Biological Chemistry 284(27):18160-18166. https://doi.org/10.1074/jbc.m109.020719

Muller AH, Gough SP, Bollivar DW, Meldal M, Willows RD, Hansson M (2011). Methods for the preparation of chlorophyllide a: An intermediate of the chlorophyll biosynthetic pathway. Analytical Biochemistry 419(2):271-276. https://doi.org/10.1016/j.ab.2011.08.028

Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, Kurisu G, Fujita Y (2010). X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465:110-114. https://doi.org/10.1038/nature08950

Mysliwa-Kurdziel B, Strzalka K (2005). Influence of Cd (II), Cr (VI), and Fe (III) on early steps of deetiolation process in wheat: fluorescence spectral changes of protochlorophyllide and newly formed chlorophyllide. Agriculture, Ecosystems and Environment 106:199-207. https://doi.org/10.1016/j.agee.2004.10.008

Mysliwa-Kurdziel B, Kruk J, Strazalka K (2013). Protochlorophyllide in model systems- An approach to in vivo conditions. Biophysical Chemistry 175-176:28-38. https://doi.org/10.1016/j.bpc.2013.02.002

Nazir S, Khan MS (2013). Integration of novel chlorophyll genes from black pine into the chloroplast genome of tobacco. Pakistan Journal of Botany 45(S1):595-600. https://doi.org/10.1007/s11033-012-1953-9

Nick S, Meurer J, Soll J, Ankele R (2013). Nucleus-encoded light-harvesting chlorophyll a/b proteins are imported normally into chlorophyll b-free chloroplasts of Arabidopsis. Molecular Plant 6:860-871. https://doi.org/10.1093/mp/sss113

Nomata J, Swem LR, Bauer CE, Fujita Y (2005). Over-expression and characterization of dark-operative protochlorophyllide reductase from Rhodobactercapsulatus. Biochimica et Biophysica Acta 1708:229-237. https://doi.org/10.1016/j.bbabio.2005.02.002

Nomata J, Kitashima M, Inoue K, Fujita Y (2006). Nitrogenase Fe protein-like Fe-S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Letters 580:6151-6154. https://doi.org/10.1016/j.febslet.2006.10.014

Nomata J, Ogawa T, Kitashima M, Inoue K, Fujita Y (2008). NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters. FEBS Letters 582:1346-1350. https://doi.org/10.1016/j.febslet.2008.03.018

Nomata J, Kondo T, Itoh S, Fujita Y (2013). Nicotinamide is a specific inhibitor of dark-operative protochlorophyllide oxidoreductase, a nitrogenase-like enzyme, from Rhodobacter capsulatus. FEBS Letters 587:3142-3147. https://doi.org/10.1016/j.febslet.2013.07.054

Nomata J, Kondo T, Mizoguchi T, Tamiaki H, Itoh S, Fujita Y (2014). Dark-operative protochlorophyllide oxidoreductase generates substrate radicals by an iron-sulphur cluster in bacteriochlorophyll biosynthesis. Scientific Reports. 4:5455. https://doi.org/10.1038/srep05455

NomataJ, Terauchi K, Fujita Y (2016). Stoichiometry of ATP hydrolysis and chlorophyllide formation of fark-operative protochlorophyllide oxidoreductase from Rhodobacter capsulatus. Biochemical and Biophysical Research Communications 470(3):704-709. https://doi.org/10.1016/j.bbrc.2016.01.070

Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takamiya K-I (2000). Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Letters 474:133-136. https://doi.org/10.1016/s0014-5793(00)01568-4

Park H, Kreunen SS, Cuttriss AJ, Della Penna D, Pogson BJ (2002). Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation and photomorphogenesis. Plant Cell 14:321-332. https://doi.org/10.1105/tpc.010302

Reinbothe C, Buhr F, Pollmann S, Reinbothe S (2003). In vitro reconstitution of light-harvesting POR-protochlorophyllide complex with protochlorophyllides a and b. The Journal of Biological Chemistry 278(2):807-815. https://doi.org/10.1074/jbc.m209738200

Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita J, Reinbothe S (2010). Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends in Plant Science 15:614-624. https://doi.org/10.1016/j.tplants.2010.07.002

Ryberg M, Sundqvist C (1982). Characterization of prolamellar bodies and prothylakoids fractionated from wheat etioplasts. Physiologia Plantarum 56:125-132. https://doi.org/10.1111/j.1399-3054.1982.tb00313.x

Sakuraba Y, Tanaka R, Yamasato A, Tanaka A (2009). Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. The Journal of Biological Chemistry 284(52):36689-36699. https://doi.org/10.1074/jbc.m109.008144

Sarma R, Barney B, Hamilton T, Jones A, Seefeldt L, Peters J (2008). Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47:13004-13015.https://doi.org/10.2210/pdb3end/pdb

Schoefs B, Franck F (2004). Protochlorophyllide reduction: mechanisms and evolution. Photochemistry and Photobiology 78:543-557. https://doi.org/10.1562/0031-8655(2003)0780543prmae2.0.co2

Schoefs B (2005). Protochlorophyllide reduction- what is new in 2005? Photosynthetica 43:329-343. https://doi.org/10.1007/s11099-005-0056-4

Selstam E (1998). Development of thylakoid membranes with respect to lipids. In: Lipids in Photosynthesis: Structure, Function and Genetics. Paul-Andre S and Norio M (Eds). The Netherlands: Springer, pp. 209-224. https://doi.org/10.1007/0-306-48087-5_11

Selstam E, Schelin J, Brain T, Williams WP (2002). The effects of low pH on the properties of protochlorophyllide oxidoreductase and the organization of prolamellar bodies of maize (Zea mays). European Journal of Biochemistry 269:2336-2346. https://doi.org/10.1046/j.1432-1033.2002.02897.x

Shahrajabian MH, Sun W, Cheng Q (2021) The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Review in Organic Chemistry. 18. https://doi.org/10.2174/1570178618666210707161025

Shui J, Saunders E, Needleman R, Nappi M, Cooper J, Hall L, Kehoe D, Stowe-Evans E (2009). Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting Cynanobacterium fremyella diplosiphon UTEX 481. Plant and Cell Physiology 50(8):1507-1521. https://doi.org/10.1093/pcp/pcp095

Sineshchekov V, Belyaeva O, Sudnitsin A (2004). Up-regulation by phytochrome A of the active protochlorophyllide, Pchlide655, biosynthesis in dicots under far-red light. Journal of Photochemistry and Photobiology B: Biology 74(1):47-54. https://doi.org/10.1016/j.jphotobiol.2004.02.001

Soleymani A, Shahrajabian MH, Khoshkharam M (2016). The impact of barley residue management and tillage on forage maize. Romanian Agricultural Research 33:161-167.

Solymosi K, Schoefs B (2008). Prolamellar body: a unique plastid compartment, which does not only occur in dark-grown leaves. In: Schoefs B (Ed). Plant Cell Compartments- Selected Topics, Res. Sign Post, India, pp 152-202.

Solymosi K, Schoefs B (2010). Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynthesis Research 105:143-166. https://doi.org/10.1007/s11120-010-9568-2

Sperling U, van Cleve B, Frick G, Apel K, Armstrong GA (1997). Over-expression of light-dependent PORA and PORB in plants depleted of endogeneous POR by far-red enhances seedling survival in white light and protects against photooxidative damage. The Plant Journal 12:649-658. https://doi.org/10.1046/j.1365-313x.1997.d01-11.x

Sun W, Shahrajabian MH, Cheng Q (2019). The insight and survey on medicinal properties and nutritive components of shallot. Journal of Medicinal Plant Research 13(18):452-457. https://doi.org/10.5897/jmpr2019.6836

Sun W, Shahrajabian MH, Cheng Q (2021). Fenugreek cultivation with emphasis on historical aspects and its uses in traditional medicine and modern pharmaceutical science. Mini Reviews in Medicinal Chemistry 21(6):724-730. https://doi.org/10.2174/1389557520666201127104907

Suzuki JY, Bollivar DW, Bauer CE (1997). Genetic analysis of chlorophyll biosynthesis. Annual Review of Genetics 31:61-89. https://doi.org/10.1146/annurev.genet.31.1.61

Takano Y, Yonezawa Y, Fujita Y, Kurisu G, Nakamura H (2011). Electronic structures of a [4Fe-4S] cluster, [Fe4S4(SCH3)3(CH3COO)], in dark-operative protochlorophyllide oxidoreductase (DPOR). Chemical Physics Letters 503:296-300. https://doi.org/10.1016/j.cplett.2011.01.026

Talaat NB (2013). RNAi based simultaneous silencing of all forms of light-dependent NADPH: protochlorophyllide oxidoreductase genes result in the accumulation of protochlorophyllide in tobacco (Nicotiana tabacum). Plant Physiology and Biochemistry 71:31-36. https://doi.org/10.1016/j.plaphy.2013.06.025

Van der Tol C, Vehoef W, Rosema A (2009). A model for chlorophyll fluorescence and photosynthesis at leaf scale. Agricultural and Forest Meteorology 149(1):96-105. https://doi.org/10.1016/j.agrformet.2008.07.007

Vavilin D, Vermaas W (2007). Continuous chlorophyll degradation accompanied by chlorophyllide and phytol reutilization for chlorophyll synthesis in Synechocystis sp. PCC. 6830. Biochimica et Biophysica Acta 1767:920-929. https://doi.org/10.1016/j.bbabio.2007.03.010

Voitsekhovskaja OV, Tyutereva EV (2015). Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. Journal of Plant Physiology 189:51-64. https://doi.org/10.1016/j.jplph.2015.09.013

Wei H, Qingyu W, Jiujiu Y (2004). Contribution of DPOR at low light intensity to chlorophyll biosynthesis and growth in the Synechocystis sp. PCC 6803. Tsinghua Science and Technology 9(1):69-75.

Willows RD (2003). Biosynthesis of chlorophylls from protoporphyrin IX. Natural Product Reports 20:327-341. https://doi.org/10.1039/b110549n

Wu Q, Yu J, Zhao N (2001) Partial recovery of light-independent chlorophyll biosynthesis in the chlL-deletion mutant of Synechocystis sp. PCC 6803. IUBMB Life 51:289-293. https://doi.org/10.1080/152165401317190789

Yamamoto H, Kurumiya S, Ohashi R, Fujita Y (2009). Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant and Cell Physiology 50(9):1663-1673. https://doi.org/10.1093/pcp/pcp111

Yamamoto H, Kato M, Yamanashi K, Fujita Y (2014). Reconstitution of a sequential reaction of two nitrogenase-like enzymes in the bacteriochlorophyll biosynthetic pathway of Rhodobacter capsulatus. Biochemical and Biophysical Research Communications 448:200-205. https://doi.org/10.1016/j.bbrc.2014.04.087

Yamazaki S, Nomata J, Fujita Y (2006). Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiology 142:911-922. https://doi.org/10.1104/pp.106.086090

Yang J, Cheng Q (2004). Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes. Plant Biology (Stuttgart, Germany) 6(5):537-544. https://doi.org/10.1055/s-2004-821270

Zhang S, Heyes DJ, Feng L, Sun W, Johannissen LO, Liu H, … Scrutton NS (2019) Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature 574(7780):722-725. https://doi.org/10.1038/s41586-019-1685-2

Zhuang J, Wang Y, Chi Y, Zhou L, Chen J, Zhou W, Song J, Zhao N, Ding J (2020). Drought stress strengthens the link between chlorophyll fluorescence parameters and photosynthetic traits. Peer Journal 8:e10046. https://doi.org/10.7717/peerj.10046

Published
2021-09-24
How to Cite
SUN, W., SHAHRAJABIAN, M. H., & CHENG, Q. (2021). The roles of a light-dependent protochlorophyllide oxidoreductase (LPOR), and ATP-dependent dark operative protochlorophyllide oxidoreductase (DPOR) in chlorophyll biosynthesis. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12456. https://doi.org/10.15835/nbha49312456
Section
Review Articles
CITATION
DOI: 10.15835/nbha49312456