A review of the interaction of medicinal plants and arbuscular mycorrhizal fungi in the rhizosphere


  • Rui-Ting SUN Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025 (CN)
  • Ze-Zhi ZHANG Shiyan Academy of Agricultural Sciences, Shiyan, Hubei 442000 (CN)
  • Nong ZHOU Chongqing Three Gorges University, College of Biology and Food Engineering, Chongqing 404120 (CN)
  • A.K. SRIVASTAVA ICAR-Central Citrus Research Institute, Nagpur, Maharashtra (IN)
  • Kamil KUČA University of Hradec Kralove, Faculty of Science, Department of Chemistry, Hradec Kralove (CZ)
  • Elsayed F. ABD-ALLAH King Saud University, Faculty of Food and Agricultural Sciences, Plant Production Department, Riyadh 11451 (SA)
  • Abeer HASHEM King Saud University, Botany and Microbiology Department, College of Science, P.O. Box. 2460, Riyadh 11451 (SA)
  • Qiang-Sheng WU Yangtze University, College of Horticulture and Gardening, Jingzhou, Hubei 434025; University of Hradec Kralove, Faculty of Science, Department of Chemistry, Hradec Kralove (CN) http://orcid.org/0000-0002-3405-8409




endophytic fungi, medicinal components, medicinal plants, mycorrhiza, Piriformospora indica, symbiosis


Medicinal plants are well known to have the advantages of high concentration of medicinal ingredients having clinical importance, curative value, small toxic and side effects. Important compounds viz., paclitaxel, camptothecin, and vincristine have been developed from medicinal plants as first-line of clinical drugs, leading to their consistently increasing demand globally. However, the destruction of natural environment due to excessive mining threatened such resources jeopardizing the successful growing of medicinal plants. A group of beneficial arbuscular mycorrhizal (AM) fungi is known to exist in the rhizosphere of medicinal plants, which can establish a reciprocal symbiosis with their roots, namely arbuscular mycorrhizas. These AM fungi are pivotal in the habitat adaptation of medicinal plants. Studies have demonstrated that AM fungi aided in growth promotion and nutrient absorption of medicinal plants, thereby, accelerating the accumulation of medicinal ingredients and aiding resistance against abiotic stresses such as drought, low temperature, and salinity. An AM-like fungus Piriformospora indica is known to be cultured in vitro without roots, later showed analogous effects of AM fungi on medicinal plants. These fungi provide new mechanistic pathways towards the artificial cultivation of medicinal plants loaded with ingredients in huge demand in international market. This review provides an overview of the diversity of AM fungi inhabiting the rhizosphere of medicinal plants, and analyzes the functioning of AM fungi and P. indica, coupled with future lines of research.


Abadi V, Sepehri M (2016). Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 69:9-19. https://doi.org/10.1007/s13199-015-0361-z

Abdel-Fattah GM, Asrar AA, Al-Amri SM, Abdel-Salam EM (2014). Influence of arbuscular mycorrhiza and phosphorus fertilization on the gas exchange, growth and phosphatase activity of soybean (Glycine max L.) plants. Photosynthetica 52(4):581-588. https://doi.org/10.1007/s11099-014-0067-0

Bagde US, Prasad R, Varma A (2014). Impact of culture filtrate of Piriformospora indica on biomass and biosynthesis of active ingredient aristolochic acid in Aristolochia elegans Mart. International Journal of Biology 6(1):29-37. https://doi.org/10.5539/ijb.v6n1p29

Bitterlich M, Franken P, Graefe J (2018). Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Frontiers in Plant Science 9:301. https://doi.org/10.3389/fpls.2018.00301

Cai BY, Ge JP, Jie WG, Jie WG, Yan XF (2009). The community composition of the arbuscular mycorrhizal fungi in the rhizosphere of Phellodendron amurense. Mycosystema 28(4):512-520

Chen ML, Yang G, Ye S, Li PY, Qiu HY, Zhou XT, Huang LQ, Chao Z (2017). Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Frontiers in Plant Science 8:931. https://doi.org/10.3389/fpls.2017.00931

Cheng F (2019). Preliminary study on mechanisms of reducing Hg contents in Nicotiana tabacum leaves conferred by Piriformospora indica. MSc Dissertation, Zhejiang University. https://doi.org/CNKI:CDMD:2.1018.263456

Cheng HQ, Giri B, Wu QS, Zou YN, Kuča K (2021a). Arbuscular mycorrhizal fungi mitigate drought stress in citrus by modulating root microenvironment. Archives of Agronomy and Soil Science https://doi.org/10.1080/03650340.2021.1878497

Cheng HQ, Zou YN, Wu QS, Kuča K. (2021b). Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating H+-ATPase activity and gene expression. Frontiers in Plant Science 12:659694. https://doi.org/10.3389/fpls.2021.659694

Cheng LT, Liu ZY, Guo QS, Zhu GS (2009). Advances in studies on arbuscular mycorrhizas in medicinal plants. Chinese Traditional and Herbaldrugs 40:156-160. https://doi.org/10.3321/j.issn:0253-2670.2009.01.047

Cheng XF, Wu HH, Zou YN, Wu QS, Kuča K (2021). Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiology and Biochemistry 162:27-35. https://doi.org/10.1016/j.plaphy.2021.02.026

Copetta A, Lingua G, Berta G (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16(7):485-494. https://doi.org/10.1007/s00572-006-0065-6

Das A, Kamal S, Shakil N A, Sherameti I, Oelmüller R, Dua M, Narendra Tuteja N, Johri A K, Varma A (2012). The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signaling and Behavior 7(1):103-112. https://doi.org/10.4161/psb.7.1.18472

Deshmukh S, Hueckelhoven R, Schaefer P, Imani J, Sharma M, Weiss M, Frank Waller, and Karl-Heinz Kogel (2006). The root endophytic fungus piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proceedings of the National Academy of Sciences of the United States of America 103(49):18450-18457. https://doi.org/10.1073/pnas.0605697103

Evelin H, Giri B, Kapoor R (2011). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenumgraecu. Mycorrhiza 22 (3):203-217. https://doi.org/10.1007/s00572-011-0392-0

Fan JH, Zou YD, Han ZQ, Li YS (2017). Effects of AM fungi on the infection and growth of licorice. Hubei Agricultural Science 56 (4):670-673. https://doi.org/10.14088/j.cnki.issn0439-8114.2017.04.019

Fan JH, Yang GT, Qiang ML, Hai ZJ (2006). Effect of AMF on the content of berberine, jatrorrhizine and palmatine of Phellodendron amurense seedlings. Protection Forest Science and Technology 5:24-26. https://doi.org/10.3969/j.issn.1005-5215.2006.05.010

Gai JP, Liu RJ, Meng XX (2000). Arbuscular mycorrhizal fungi in the rhizosphere of wild plants. Mycosystema 19(2):24-28. https://doi.org/10.3969/j.issn.1672-6472.2000.02.011

Gao AX, He XL (2007). Ecological study on am fungi around roots of medicinal plants in the middle area of Hebei province. Agricultural Research in the Arid Areas 25(3):196-202. https://doi.org/10.1016/S1872-2040(07)60079-6

He F, Sheng M, Tang M (2017). Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Frontiers in Plant Science 8:183. https://doi.org/10.3389/fpls.2017.00183

He JD, Zou YN, Wu QS, Kuča K (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae 262:108745. https://doi.org/10.1016/j.scienta.2019.108745.

He X, Li J, He C (2009). Effects of AM fungi on the chemical components of Salvia miltiorrhiza. Chinese Agricultural Science Bulletin 25(14):182-185. https://doi.org/CNKI:SUN:ZNTB.0.2009-14-045

Huang JH, Tan JF, Jie HK, Zeng RS (2011). Effects of inoculating arbuscular mycorrhizal fungi on Artemisia annua growth and its officinal components. Chinese Journal of Applied Ecology 22:1443-1449. https://doi.org/10.3724/SP.J.1011.2011.00353

Hashem A, Kumar A, Al-Dbass AM, Alqarawi AA, Al-Arjani AF, Singh G, Farooq M, Fathi Abd-Allah E (2019). Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea. Saudi Journal of Biological Sciences 26(3):614-624. https://doi.org/10.1016/j.sjbs.2018.11.005

Jiang P, Wang MY, Lu JC (2012). Arbuscular mycorrhizal fungi associated with medicinal plants in Zhangzhou, Fujian. Mycosystema 31(5):676-689.

Jang P (2012b). The resources and species diversity research on AM fungi occurring in medicinal plants of south Fujian. MSc Dissertation, Huqiao University, Xiameng.

Jia HM, Fang Q, Zhang SH, Yan ZY, Liu M (2020). Effects of AM fungi on growth and rhizosphere soil enzyme activities of Salvia miltiorrhiza. Acta Prataculturae Sinica 29(6):83-92. https://doi.org/10.11686/cyxb2019494

Koul KK, Agarwa S, Lone R (2012). Diversity of arbuscular mycorrhizal fungi associated with the medicinal plants from gwalior-chambal region of Madhya Pradesh-India. American-Eurasian Journal of Agricultural and Environmental Sciences 12(8):1004-1011. https://doi.org/10.5829/idosi.aejaes.2012.12.08.1846

Kapoor R, Anand G, Gupta P, Mandal, S (2016). Insight into the mechanisms of enhanced production of valuable terpenoids by arbuscular mycorrhiza. Phytochemistry Reviews 16:677-692. https://doi.org/10.1007/s11101-016-9486-9

Karasawa T, Hodge A, Fitter AH (2012). Growth respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil. Plant, Cell and Environment 35:819-828. https://doi.org/10.1111/j.1365-3040.2011.02455.x

Khan A, Ding ZT, Ishaq M, Khan I, Ahmed AA, Khan AQ, Guo XS (2020). Applications of beneficial plant growth promoting rhizobacteria and mycorrhizae in rhizosphere and plant growth: A review. International Journal of Agricultural and Biological Engineering 13(5):199-208. https://doi.org/10.25165/j.ijabe.20201305.5762

Kilam D, Saifi M, Abdin M Z, Agnihotri A, Varma A (2015). Combined effects of Piriformospora indica and Azotobacter chroococcum enhance plant growth, antioxidant potential and steviol glycoside content in Stevia rebaudiana. Symbiosis 66:149-156. 10.1007/s13199-015-0347-x. https://doi.org/10.1007/s13199-015-0347-x

Kilam D, Saifi M, Abdin MZ, Agnihotri A, Varma A (2017). Endophytic root fungus piriformospora indica affects transcription of steviol biosynthesis genes and enhances production of steviol glycosides in stevia rebaudiana. Physiological and Molecular Plant Pathology 97:40-48. https://doi.org/10.1016/j.pmpp.2016.12.003

Kumar A, Choudhary AK, Suri VK (2016). Influence of AM fungi, inorganic phosphorus and irrigation regimes on plant water relations and soil physical properties in okra (Abelmoschus esculentus L) - pea (Pisum sativum L) cropping system in Himalayan acid alfisol. Journal of Plant Nutrition 39:666-682. https://doi.org/10.1080/01904167.2015.1087030

Khalvati MA, Hu Y, Mozafar A, Schmidhalter U (2005). Quantification of water uptake by arbuscular mycorrhizal hyphae and its significance for leaf growth, water relations, and gas exchange of barley subjected to drought stress. Plant Biology 7(6):706-712. https://doi.org/10.1055/s-2005-872893

Labidi S, Jeddi FB, Tisserant B, Yousfi M, Sanaa M, Dalpé Y, Lounes-Hadj Sahraoui A (2015). Field application of mycorrhizal bioinoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25:297-309. https://doi.org/10.1007/s00572-014-0609-0

Langeroodi ARS, Osipitan OA, Radicetti E, Mancinelli R (2020). To what extent arbuscular mycorrhiza can protect chicory (Cichorium intybus L) against drought stress. Scientia Horticulturae 263:109109. https://doi.org/10.1016/j.scienta.2019.109109

Li HL, Xu LF, Li ZW, Zhao SX, Guo DQ, Rui L, Zhou N (2021). Mycorrhizas affect polyphyllin accumulation of Paris polyphylla var. yunnanensis through promoting PpSE expression. Phyton-International Journal of Experimental Botany 90(5):1535-1547. Https://doi.org/10.32604/phyton.2021.015697

Li PM, Han RG, Liu J, Yang CQ (2011). Diversity of vesicular and arbuscular (VA) mycorrhizal fungi in major medicinal plants from Chongqing. Hunan Agricultural Sciences 3(141-142):146. https://doi.org/10.3969/j.issn.1006-060X.2011.03.042

Liang XF, Tang MJ, Lu LX, Zhao XY, Dai CC (2018). Effects of three arbuscular mycorrhizal fungi (AMF) species on the growth, physiology, and major components of essential oil of Atractylodes lancea. Chinese Journal of Ecology 37:1871-1879. https://doi.org/10.13292/j.1000-4890.201806.010

Liu CY, Zhang F, Zhang DJ, Srivastava AK, Wu QS, Zou YN (2018). Mycorrhiza stimulates root-hair growth and IAA synthesis and transport in trifoliate orange under drought stress. Scientific Reports 8(1):1978. https://doi.org/10.1038/s41598-018-20456-4

Liu JC, Ma Y, Tao JP, Gao KM, Liang QH (2015). Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in Karst regions of southwestern China. Journal of Beijing Forestry University 37:110-116. https://doi.org/10.13332/j.1000-1522.20150057

Lou BG, Sun C, Cai DG (2007). Piriformospora indica with multiple functions and its application prospects. Acta Phytophylacica Sinica 34:653-656. https://doi.org/10.3321/j.issn:0577-7518..06.017

Lu YQ, Wang Dong-xue, Lu XL, Li LM, Li Y, He XL (2011). Effects of AM fungi on physiological character and nutritional component of Atractylodes macrocephala under different N levels. Acta Botanica Boreali-Occidentalia Sinica 31:351-356. https://doi.org/10.1016/j.actao.2011.02.010

Ma YF, Yang XH, Li PM, Tong RJ (2005). Investigation of the diversity of arbuscular mycorrhizal structure of medicinal plants in Chongqing. Journal of Southwest Agricultural University 27(3):406-409. https://doi.org/10.3969/j.issn.1673-9868.2005.03.031

Mandal S, Upadhyay S, Singh VP, Kapoor R (2015a). Enhanced production of steviol glycosides in mycorrhizal plants: a concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes. Plant Physiology and Biochemistry 89:100-106. https://doi.org/10.1016/j.plaphy.2015.02.010

Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Abdin MZ, Kapoor R (2015b). Arbuscular mycorrhiza increases artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345-357. https://doi.org/10.1007/s00572-014-0614-3

Mathur S, Tomar RS, Jajoo A (2019). Arbuscular mycorrhizal fungi (AMF) protect photosynthetic apparatus of wheat under drought stress. Photosynthesis Research 139(1):227-238. https://doi.org/10.1007/s11120-018-0538-4

Mahobiya D, Kulkarni P (2018). Biodiversity of arbuscular mycorrhizal (AM) fungi associated with cultivated medicinal plants. Advances in Plant Sciences 24(1):125-128.

Meng LL, He JD, Zou YN, Wu QS, Kuča K (2020). Mycorrhiza-released glomalin-related soil protein fractions contribute to soil total nitrogen in trifoliate orange. Plant, Soil and Environment 66:183-189. https://doi.org/10.17221/100/2020-PSE

Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Savolainen V (2017). Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytologist 217(3):1254-1266. https://doi.org/10.1111/nph.14850

Pan Y, Xiao CH, Chen ML, Zhou T, Ai Q, Song J (2013). Effects of arbuscular mycorrhizal fungi on growth and chemical composition of Chrysanthemum morifolium. Guizhou Agricultural Sciences 41(1):109-111. https://doi.org/10.3969/j.issn.1001-3601.2013.01.033

Pongrac P, Vogel-Mikus K, Regvar M, Tolrà R, Poschenrieder C, Barceló J (2008). Glucosinolate profiles change during the life cycle and mycorrhizal colonization in a Cd/Zn hyperaccumulator Thlaspi praecox (Brassicaceae). Journal of Chemical Ecology 34(8):1038-1044. https://doi.org/10.1007/s10886-008-9502-7

Prasad A, Kumar S, Khaliq A, Pandey A (2011). Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biology and Fertility of Soils 47(8):853-861. https://doi.org/10.1007/s00374-011-0590-0

Prasad A, Kumar S, Pandey A, Chand, S (2012). Microbial and chemical sources of phosphorus supply modulate the yield and chemical composition of essential oil of rose-scented geranium (Pelargonium species) in sodic soil. Biology and Fertility of Soils 48(1):117-122. https://doi.org/10.1007/s00374-011-0578-9

Parmita Z, Apurbo KR, Nurus SK, Nurul A, Tanzima Y (2008). Arbuscular mycorrhizal status of medicinal plants in Rajshahi University Campus. Mycosystema 27(4):543-553.

Radhika KP, Rodrigues BF (2010). Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of western ghats goa region. Journal of Forestry Research 21(1):45-52. https://doi.org/10.1007/s11676-010-0007-1

Ren JH, Liu RX, Li YL (2007). Study on arbuscular mycorrhizae of Panax notoginseng. Microbiology China 34(2):224-227. https://doi.org/10.3969/j.issn.0253-2654.2007.02.007

Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, … Kogel KH (2010). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant Journal 59(3):461-474. https://doi.org/10.1111/j.1365-313X.2009.03887.x

Shahabivand S, Parvaneh A, Aliloo AA (2017). Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicology and Environmental Safety 145:496-502. https://doi.org/10.1016/j.ecoenv.2017.07.064

Satheesa J, Narayanan AK, Sakunthala M (2012). Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195-202. https://doi.org/10.1007/s00572-011-0394-y

Sharma G, Agrawal V (2013). Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World Journal of Microbiology and Biotechnology 29(6):1133-1138. https://doi.org/10.1007/s11274-013-1263-y

Sharma P, Kharkwal AC, Abdin MZ, Varma A (2014). Piriformospora indica improves micropropagation, growth and phytochemical content of (Aloe vera L.) plants. Symbiosis 64(1):11-23. https://doi.org/10.1007/s13199-014-0298-7

Smith SE, Facelli E, Pope S, Smith FA (2010). Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant and Soil 326(1-2):3-20. https://doi.org/10.1007/s11104-009-9981-5

Su Y, Liu LB, Cai XZ, Zhu CM, Liang JW, Tang GD (2018). Diversity of arbuscular mycorrhizal fungi of Begonia fimbristipula. Forestry and Environmental Science 34:8-14.

Sun C, Johnson JM, Cai DG, Sherameti I, Oelmüller R, Lou, BG (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology 167(12):1009-1017. https://doi.org/10.1016/j.jplph.2010.02.013

Swetha S, Padmavathi T, Tallapragada (2017). Study of acid phosphatase in solubilization of inorganic phosphates by Piriformospora indica. Polish Journal of Microbiology 65(4):407-412. https://doi.org/10.5604/17331331.1227666

Tebuqin, Bao YY (2015). Colonization characteristics of AMF in common mongolian medicinal plants of horqin sandy land. Inner Mongolia Agricultural Science and Technology 43(6):25-28. https://doi.org/10.3969/j.issn.1007-0907.2015.06.008

Ullah R, Alqahtani AS, Noman OMA, Alqahtani AM, Ibenmoussa S, Bourhia M (2020). A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia. Saudi Journal of Biological Sciences 27(10):2706-2718. https://doi.org/10.1016/j.sjbs.2020.06.020

Vadassery J, Ritter C, Venus Y, Cameh I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008). The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Molecular Plant-Microbe Interactions 21(10):1371-1383. https://doi.org/10.1094/MPMI-21-10-1371

Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Applied and Environmental Microbiology 65(6):2741-2744. https://doi.org/10.1128/AEM.65.6.2741-2744.1999

Vassilev N, Eichler-Löbermann B, Flor-Peregrin E, Martos V, Reyes A, Vassileva M (2017). Production of a potential liquid plant bio-stimulant by immobilized Piriformospora indica in repeated-batch fermentation process. AMB Express 7(1):106. https://doi.org/10.1186/s13568-017-0408-z

Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Britta B, Philipp F (1998). Piriformospora indica, gen. et sp. nov. a new root-colonizing fungus. Mycologia 90(5):896-903. https://doi.org/10.2307/3761331

Wei GT, Wang HG (1991). Effect of vesicular-arbuscular mycorrhizal fungi on growth, nutrient uptake and synthesis of volatile oil in Schizonepeta tenuifolia briq. China Journal of Chinese Materia Medica 16(3):139-142.

Wei GT, Wang HG (1989). Effects of VA mycorrhi zal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Daturastra monium L. Scientia Agricultura Sinica 22(5):56-61.

Wei M, Tong QY, Chai RJ, Ding JH (2018). Effect of orchid mycorrhizal fungi on growth, antioxidant defense and related gene expression of dendrobium of ficianle under drought stress. Acta Botanica Boreali-Occidentalia Sinica 38(10):1905-1912. https://doi.org/10.7606/j.issn.100-4025.2018.10.1905

Welling MT, Liu L, Rose TJ, Waters D, Benkendorff K (2016). Arbuscular mycorrhizal fungi: effects on plant terpenoid accumulation. Plant Biology 18:552-562. https://doi.org/10.1111/plb.12408

Wu QS, He JD, Srivastava AK, Zou YN, Kuča K (2019). Mycorrhiza enhances drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology 39(7):1149-1158. https://doi.org/10.1093/treephys/tpz039

Wu QS, Gao WQ, Srivastava AK, Zhang F, Zou YN (2020). Nutrient acquisition and fruit quality of Ponkan mandarin in response to AMF inoculation. Indian Journal of Agricultural Sciences 90:1563-1567.

Wu QS, Srivastava AK, Zou YN, (2013). AMF-induced tolerance to drought stress in citrus: a review. Scientia Horticulturae 164:77-87. https://doi.org/10.1016/j.scienta.2013.09.010

Wang XF, Zhang X, Zhao RH, Yu J, Gu W, Li R, Cao GH, He S (2020). Effect and mechanism of arbuscular mycorrhizal fungi in herbs. Chinese Journal of Experimental Traditional Medical Formulae 26(11):217-226. https://doi.org/10.13422/j.cnki.syfjx.20200811

Xie M, Deng Y, Lei XG, Fan L (2017). Effects of inoculating arbuscular mycorrhizal fungi on root growth of strawberry under drought stress. Journal of Anhui Agriculture Science 45(19):10-12.

Xie W, Hao ZP, Zhou XF, Jiang XL, Xu LJ, Wu SL, Zhao AH, Zhang X, Chen BD (2018). Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28(3):285-300. https://doi.org/10.1007/s00572-018-0827-y

Xie W, Hao ZP, Guo LP, Zhang X, Zhang SB, Wang YS, Chen BD (2020). Research advances in terpenoids synthesis and accumulation in plants as influenced by arbuscular mycorrhizal symbiosis. Biotechnology Bulletin, 36(9):49-63. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2020-0117

Xing XK, Li Y, Dalp Y (2000). Ten species of VAM fungi in five ginseng fields of Jilin province. Journal of Jilin Agricultural University 22(2):41-46.

Xu FL, Zhu ZY, He Y, Tian ZH (2021). Effects of Piriformospora indica on seed germination and protocorm growth of Dendrobium officinale. Journal of Tropical and Subtropical Botany 29(1):59-66. https://doi.org/10.11926/jtsb.4231

Xu Y, Fan Y, Yu YH, Xu CY, Ge Y (2014). Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress. Chinese Journal of Ecology 33:3395-3402. https://doi.org/10.13292/j.1000-4890.2014.0305

Xu L, Wang AA, Wang J, Wei Q, Zhang WY (2017). Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop Journal 5:251-258. https://doi.org/10.1016/j.cj.2016.10.002

Yadav K, Aggarwal A, Singh N (2013). Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micro propagated (Gloriosa superba L.) plantlets. Industrial Crops and Products 45:88-93. https://doi.org/10.1016/j.indcrop.2012.12.001

Yang J (2018). Research of antitumor effects and mechanisms of three medicinal plants. MSc Dissertation, South-Central University for Nationalities.

Yang L, Zou YN, Tian ZH, Wu QS, Kuča K (2021). Effects of beneficial endophytic fungal inoculants on plant growth and nutrient absorption of trifoliate orange seedlings. Scientia Horticulturae 277:109815. https://doi.org/10.1016/j.scienta.2020.109815

Yang L (2012). Effects of arbuscular mycorrhiza fungi on resistance to root disease by Salvia miltiorrhiza and related mechanisms. MSc Dissertation, Southwest Jiaotong University.

Zubek S, Błaszkowski J (2009). Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochemistry Reviews 8:571-580. https://doi.org/10.1007/s11101-009-9135-7

Zubek S, Stojakowska A, Anielska T, Turnau K (2010). Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497-504. https://doi.org/10.1007/s00572-010-0306-6

Zeng L, Wang M Y, Li F J, Zheng WJ (2014). Mechanism and effects of AM fungi on medicinal plants. Journal of Anhui Agricultural Sciences 42:4231-4233. https://doi.org/10.13989/j.cnki.0517-6611.2014.14.080

Zeng Y, Guo LP, Chen BD, Hao ZP, Wang JY, Huang LQ, … Zhang Y (2013). Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospective. Mycorrhiza 23:253-265. https://doi.org/10.1007/s00572-013-0484-0

Zarea MJ, Hajinia S, Karimi N, Goltapeh EM, Rejali F, Varma A (2012). Effect of Piriformospora indica and Azospirillum strains from saline or non-saline soil on mitigation of the effects of NaCl. Soil Biology and Biochemistry 45:139-146. https://doi.org/10.1016/j.soilbio.2011.11.006

Zhan HX, Du CH, Liu R, Shang CL, Zhang Y, Hu N, Pei XP (2020). Research progress of quality characters in medicinal plants. Modernization of Traditional Chinese Medicine and Materia Materia-World Science and Technology 22:2893-2898. https://doi.org/10.11842/wst.20190415006

Zhang F, Zou YN, WU QS (2019a). Effects of Funneliformis mosseae on the expression of antioxidant enzyme genes in trifoliate orange exposed to drought stress. Mycosystema 38:2043-2050. https://doi.org/10.13346/j.mycosystema.190199

Zhang F, Wang P, Zou YN, Wu QS, Kuča K (2019b). Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Archives of Agronomy and Soil Science 65:1316-1330. https://doi.org/10.1080/03650340.2018.1563780

Zhang H, Sun JQ, Bao YY (2015). Advances in studies on plant secondary metabolites influenced by arbuscular mycorrhizal fungi. Journal of Agricultural Biotechnology 23(8):1093-1103. https://doi.org/10.3969/j.issn.1674-7968.2015.08.013

Zhang WH, Tang M (2006). On VA mycorrhiza fungi resources in the North of China. Journal of Northwest Forestry University 21(2):121-125. https://doi.org/10.3969/j.issn.1001-7461.2006.02.034

Zhang Y, Li J, Yao Q, Chen JZ, Hu YL, Liu XY, Huang YJ (2012). Effects of arbuscular mycorrhizal fungi on growth and nutrient uptake of Eriobotrya japonica plants under different water regimes. Acta Horticulturae Sinica 39:757-762. https://doi.org/10.16420/j.issn.0513-353x.2012.04.020

Zhang ZF, Zhang JC, Huang YQ, Yang H, Luo, YJ, Luo, AY (2013). Effects of arbuscular mycorrhizal fungi on plant drought tolerance: research progress. Chinese Journal of Ecology 32(6):1607-1612. https://doi.org/10.13292/j.1000-4890.2013.0271

Zhao J (2010). Ecological distribution of arbuscular mycorrhizal fungi in the rhizosphere of ten species of medicinal plants in Anguo city, Hebei province. MSc Dissertation, Hebei University.

Zhao PJ, An F, Tang M (2007). Effects of arbuscular mycorrhiza fungi on drought resistance of Forsythia suspense. Acta Botanica Boreali-Occidentalia Sinica 27(2):396-399. https://doi.org/10.1016/S1872-2075(07)60055-7

Zhao XH, Liu X, Chen SL, Xiang L (2019). Protection and application of genetic resources of medicinal plants. Modern Chinese Medicine 21:1456-1463. https://doi.org/10.13313/j.issn.1673-4890.20190903002

Zhao JL, He XL (2011). Effects of am fungi on drought resistance and content of chemical components in Angelica dahurica. Acta Agriculturae Boreali-Occidentalis Sinica 20(3):184-189. https://doi.org/10.7606/j.issn.1004-1389.2011.03.035

Zhou N, Xia CL, Jiang B, Bai ZC, Liu GM, Ma XK (2009). Arbuscular mycorrhizae in Paris polyphylla var. Yunnanensis. China Journal of Chinese Materia Medica 34(14):1768-1772.

Zhu Y X, Song J, Xiao W J (2011). Identification of arbuscular mycorrhizal fungi from Salvia miltiorrhiza. Pharmacy and Clinics of Chinese Materia Medica 2(3):17-20.

Zou YN, Wu QS, Kuča K (2021a). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biology 23(1):50-57. https://doi.org/10.1111/plb.13161

Zou YN, Zhang F, Srivastava AK, Wu QS, Kuča K (2021b). Arbuscular mycorrhizal fungi regulate polyamine homeostasis in roots of trifoliate orange for improved adaptation to soil moisture deficit stress. Frontiers in Plant Science 11:600792. https://doi.org/10.3389/fpls.2020.600792




How to Cite

SUN, R.-T., ZHANG, Z.-Z., ZHOU, N., SRIVASTAVA, A., KUČA, K., ABD-ALLAH, E. F., HASHEM, A., & WU, Q.-S. (2021). A review of the interaction of medicinal plants and arbuscular mycorrhizal fungi in the rhizosphere. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12454. https://doi.org/10.15835/nbha49312454



Review Articles
DOI: 10.15835/nbha49312454

Most read articles by the same author(s)

<< < 1 2 3 > >>