Beneficial microorganisms enhance the growth of basil (Ocimum basilicum L.) under greenhouse conditions

Authors

  • Yonger TAMAYO-AGUILAR Autonomous University of the State of Morelos, Graduate Program in Agricultural Sciences and Rural Development, Faculty of Agricultural Sciences, Av. Universidad 1001, 62210 Cuernavaca, Morelos (MX)
  • Porfirio JUAREZ-LOPEZ Autonomous University of the State of Morelos, Graduate Program in Agricultural Sciences and Rural Development, Faculty of Agricultural Sciences, Av. Universidad 1001, 62210 Cuernavaca, Morelos (MX)
  • Jose A. CHAVEZ-GARCIA Autonomous University of the State of Morelos, Graduate Program in Agricultural Sciences and Rural Development, Faculty of Agricultural Sciences, Av. Universidad 1001, 62210 Cuernavaca, Morelos (MX)
  • Iran ALIA-TEJACAL Autonomous University of the State of Morelos, Graduate Program in Agricultural Sciences and Rural Development, Faculty of Agricultural Sciences, Av. Universidad 1001, 62210 Cuernavaca, Morelos (MX)
  • Dagoberto GUILLEN-SANCHEZ Autonomous University of the State of Morelos, Graduate Program in Agricultural Sciences and Rural Development, Faculty of Agricultural Sciences, Av. Universidad 1001, 62210 Cuernavaca, Morelos (MX)
  • Jesus O. PEREZ-GONZALEZ Technological University of the South of Morelos State, Carretera Puente de Ixtla, km 2.35, Colonia 24 de febrero, 62665 Mazatepec, Morelos (MX)
  • Victor LOPEZ-MARTINEZ Autonomous University of the State of Morelos, Graduate Program in Agricultural Sciences and Rural Development, Faculty of Agricultural Sciences, Av. Universidad 1001, 62210 Cuernavaca, Morelos (MX)
  • Maria C. RUEDA-BARRIENTOS Autonomous University of the State of Morelos, Graduate Program in Agricultural Sciences and Rural Development, Faculty of Agricultural Sciences, Av. Universidad 1001, 62210 Cuernavaca, Morelos (MX)
  • Odira BAQUE-FUENTES University of Guantanamo, Faculty of Humanistic Sciences, Av. Che Guevara, km 1.5, Carretera a Jamaica, 95100, Guantánamo (CU)

DOI:

https://doi.org/10.15835/nbha49412452

Keywords:

Arbuscular mycorrhizal fungi, aromatic plants, Bacillus subtilis, biofertilizers, Glomus cubense, Trichoderma harzianum

Abstract

DOI: 10.15835/nbha49412452

The integration of healthy management alternatives continues to be a challenge in the organic production of aromatic and medicinal plants, including of basil (Ocimum basilicum L.). The objective of this work was to evaluate the effects of three beneficial microorganisms (1) Trichoderma harzianum (TH), (2) Bacillus subtilis (BS), (3) Glomus cubense (GC) and their combinations on the growth of basil. A completely randomised design was used with a control and seven treatments with six repetitions. The control (1) was with no microorganism inoculation and the seven treatments were inoculations with the single or the combined microorganisms as follows: (2) TH, (3) BS, (4) GC, (5) TH+BS, (6) TH+GC, (7) BS+GC and (8) TH+BS+GC. Three harvests of fresh biomass were made and a number of growth variables were recorded: fresh and dry biomass, leaf area, number of commercial stems, stem length and thickness, Leaf length and width, relative chlorophyll concentration (SPAD readings) and the levels of N, P, K, Ca and Mg. Overall growth increased by 58% with TH+GC compared with the control and by 55% compared with the single inoculations (TH, BS and GC) and with the triple inoculation (TH+BS+GC). A growth increase of 51% was obtained with BS+GC compared with the control and of 38% compared with the other treatments. These results indicate co-inoculation of TH+GC or of BS+GC are useful alternative managements to increase greenhouse production of basil.

Metrics

Metrics Loading ...

References

Abdel-Rahman SSA, Abdel-Kader AAS, Khalil SE (2011). Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nature and Science 9(6):93-111.

Abdollahi-Arpanahi A, Feizian M, Mehdipourian G (2020). Influence of drought stress and plant growth promoting rhizobacteria (PGPR) inoculation on morphological characteristics, essential oil yield and composition of Thymus daenensis Clack. Iranian Journal of Medicinal and Aromatic Plants Research 36(3):417-428. https://doi.org/10.22092/ijmapr.2020.342064.2731

Aguirre-Becerra H, Vázquez-Hernández MC, Sáenz de la OD, Alvarado-Mariana A, Guevara-González RG, García-Trejo JF, Feregrino-Pérez AA (2021). Role of stress and defense in plant secondary metabolites production. In: Pal D, Nayak AK (Eds). Bioactive Natural Products for Pharmaceutical Applications. Springer International Publishing pp 151-195. https://doi.org/10.1007/978-3-030-54027-2_5

Ajeng A A, Abdullah R, Malek MA, Chew K W, Ho YC, Ling TC, Lau BF, Show PL (2020). The effects of biofertilizers on growth, soil fertility, and nutrients uptake of oil Palm (Elaeis Guineensis) under greenhouse conditions. Processes 8(12):1681. https://doi.org/10.3390/pr8121681

Alcántar GG, Sandoval VM (1999). Manual de Análisis Químico de Tejido Vegetal. Guía de muestreo, preparación, análisis e interpretación [Manual of chemical analysis of plant tissue. Guide to sampling, preparation, analysis and interpretation]. Publicación especial Núm. 10. Sociedad mexicana de la Ciencia del Suelo, A. C. Chapingo, México pp 155.

Álvarez M, Tucta F, Quispe E, Meza V (2018). Incidencia de la inoculación de microorganismos benéficos en el cultivo de fresa (Fragaria sp.) [Incidence of the inoculation of beneficial microorganisms in the strawberry (Fragaria sp.) Crop]. Scientia Agropecuaria 9(1):33-42. https://doi.org/10.17268/sci.agropecu.2018.01.04

Anguiano-Cabello JC, Flores-Olivas A, Olalde-Portugal V, Arredondo-Valdés R, Laredo-Alcalá EI (2019). Evaluation of Bacillus subtilis as promoters of plant growth. Revista Bio Ciencias 6(e418):1-13. https://doi.org/10.15741/revbio.06.e418

Arango MC, Ruscitti M, Betrano J (2013). Alternativa para aumentar la producción en plantas de Mentha x piperita L [Alternative to increase production in plants of Mentha x piperita L.] Contacto Rural 3:6-7.

Arango MC, Ruscitti MF, Ronco MG, Beltrano J (2012). Mycorrhizal fungi inoculation and phosphorus fertilizer on growth, essential oil production and nutrient uptake in peppermint (Mentha piperita L.). Revista Brasileira de Plantas Medicinais 14(4):692-699. https://doi.org/10.1590/S1516-05722012000400018

Baum C, El-Tohamy W, Gruda N (2015). Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulture 187:131-141. https://doi.org/10.1016/j.scienta.2015.03.002

Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, … Jan AT (2020). Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Frontiers in Microbiology 11. https://doi.org/10.3389/fmicb.2020.01952

Bordoloi A, Shukla AK (2020). Effect of mycorrhizal application on plant growth and nutrient uptake of Piper mullesua plantlets under sterilized, unsterilized and field soil condition. International Journal of Current Microbiology and Applied Sciences 9(5):2948-2960. https://doi.org/10.20546/ijcmas.2020.905.338

Chiquito-Contreras RG, Solis-Palacios R, Reyes-Pérez JJ, Reyes J, Murillo-Amador B, Alejandre-Rosas J, Hernández-Montiel LG (2018). Promoción del crecimiento de plantas de albahaca utilizando hongos micorrícicos arbusculares y una bacteria marina [Promotion of basil plant growth using arbuscular mycorrhizal fungi and marine bacteria]. Acta Universitaria 28(6):68-76. https://doi.org/10.15174/au.2018.2086

CONAGUA (2018). Estadísticas Agrícolas de las Unidades de Riego. Año agrícola 2016–2017. (Edición 2018; pp 925). Comisión nacional del agua [Agricultural Statistics of the Irrigation Units. Agricultural year 2016–2017. (2018 Edition; p. 925). Comisión nacional del agua. México. Retrieved 2020 December 11 from https://files.conagua.gob.mx/conagua/publicaciones/Publicaciones/SGIH-3-18.pdf

Corrales LC, Caycedo-Lozano L, Gómez- Méndez MA, Ramos-Rojas SJ, Rodríguez-Torres JN (2017). Bacillus spp: Una alternativa para la promoción vegetal por dos caminos enzimáticos [Bacillus ssp: An alternative for plant promotion by two enzymatic pathways]. Nova 15(27):45. https://doi.org/10.22490/24629448.1958

Delgado-Ospina J, Menjivar-Flores JC, Bonilla-Correa CR (2012). Effect of fertilization on dry matter production and extraction of nutrients in three accessions of Lippia origanoides H.B.K. Acta Agronómica 61(4):302-308.

Emmanuel OC, Babalola OO (2020). Productivity and quality of horticultural crops through co-inoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research 239:126569. https://doi.org/10.1016/j.micres.2020.126569

Esquivel-Quispe R (2020). Propagación de hongos micorrizógenos arbusculares nativos y su influencia en la producción de maíz amiláceo en Paquecc –Ayacucho. Segunda parte: Hacia una agricultura sostenible [Propagation of native arbuscular mycorrhizal fungi and their influence on the production of starchy corn in Paquecc-Ayacucho. Second two: Towards sustainable agriculture]. Journal of the Selva Andina Biosphere 8(1):53-63.

Fernández F, Gómez R, Vanegas LF, Martínez MA, de la Noval BM, Rivera R (2000). Producto inoculante micorrizógeno [Mycorrhizal inoculat product]. (Patent No. 22641). Habana Cuba.

Furnell S, Timoshyna A, Harter D (2019). Voluntary certification standards and the implementation of CITES for trade in medicinal and aromatic plant species. Traffic Bulletin 31(2):79-88.

Gómez-Bellot MJ, Ortuño MF, Álvarez S, Sánchez-Blanco MJ (2020). Influence of mycorrhizal or microbial complex inoculation on laurustinus plants irrigated with reclaimed water. The Journal of Horticultural Science and Biotechnology 95(5):661672. https://doi.org/10.1080/14620316.2020.1727781

Hernández-Melchor DJ, Ferrera-Cerrato R, Alarcón A (2019). Trichoderma: Importancia agrícola, biotecnológica, y sistemas de fermentación para producir biomasa y enzimas de interés industrial [Trichoderma: Agricultural, biotechnological importance, and fermentation systems to produce biomass and enzymes of industrial interest]. Chilean Journal of Agricultural and Animal Sciences 35(1):98-112. https://doi.org/10.4067/S0719-38902019005000205

Hernández-Montiel LG, Murillo-Amador B, Chiquito-Contreras CJ, Zúñiga-Castañeda CE, Ruiz-Ramírez J, Chiquito-Contreras RG (2020). Respuesta morfo-productiva de plantas de pimiento morrón biofertilizadas con Pseudomonas putida y dosis reducida de fertilizantes sintéticos en invernadero [Morpho-productive response of bell pepper plants biofertilized with Pseudomonas putida and reduced dose of synthetic fertilizers in the greenhouse]. Revista Terra Latinoamericana 38(3):583-596. https://doi.org/10.28940/terra.v38i3.651

Kala CP (2015). Medicinal and aromatic plants: Boon for enterprise development. Journal of Applied Research on Medicinal and Aromatic Plants 2 (4): 134-139. https://doi.org/10.1016/j.jarmap.2015.05.002

Katan J, Gamliel A (2012). Soil solarization for the management of solborne pests: the challenges, historical perspective, and principles. In: Gamliel A, Katan J (Eds). Soil Solarization: Theory and Practice. The American Phytopathological Society. St Paul Minnesota, Chapter 5, USA, pp 45-52.

Khalediyan N, Weisany W, Schenk PM (2021). Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Industrial Crops and Products 160:113163. https://doi.org/10.1016/j.indcrop.2020.113163

Leal-Almanza J, Gutiérrez-Coronado MA, Castro-Espinoza L, Lares-Villa F, Cortes-Jiménez JM, Santos-Villalobos S de los (2018). Microorganismos promotores de crecimiento vegetal con yeso agrícola en papa (Solanum tuberosum L.) bajo casa sombra [Plant growth promoting microorganisms with agricultural gypsum in potato (Solanum tuberosum L.) under shade house]. Agrociencia 52(8):1149-1159.

López-Valenzuela EB, Armenta-Bojorquez AD, Hernández-Verdugo S, Apodaca-Sánchez MA, Samaniego-Gaxiola JA, Valdez-Ortiz A (2019). Trichoderma spp. and Bacillus spp. as growth promoters in maize (Zea mays L.). Phyton 88 (1):37-46. https://doi.org/10.32604/phyton.2019.04621

Makarov MI, Malysheva TI, Kadulin MS, Verkhovtseva NV, Sabirova RV, Lifanova VO, … Karpukhin MM (2020). The effect of Ericoid mycorrhizal and Ectomycorrhizal plants on soil properties of grass meadow in tundra of the khibiny mountains. Eurasian Soil Science 53(5):569-579. https://doi.org/10.1134/S1064229320050087

Malik A, Mor VS, Tokas J, Punia H, Malik S, Malik K, … Karwasra A (2021). Biostimulant-treated seedlings under sustainable agriculture: A global perspective facing climate change. Agronomy 11(1):14. https://doi.org/10.3390/agronomy11010014

Mohamed I, Eid KE, Abbas MHH, Salem AA, Ahmed N, Ali M, … Fang C (2019). Use of plant growth promoting Rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicology and Environmental Safety 171:539-548. https://doi.org/10.1016/j.ecoenv.2018.12.100

Moncada A, Miceli A, Vetrano F (2021). Use of plant growth-promoting rhizobacteria (PGPR) and organic fertilization for soilless cultivation of basil. Scientia Horticulture 275:109733. https://doi.org/10.1016/j.scienta.2020.109733

Neelipally RTKR, Anoruo AO, Nelson S (2020). Effect of co-Inoculation of Bradyrhizobium and Trichoderma on growth, development, and yield of Arachis hypogaea L. (Peanut). Agronomy 10(9):1415. https://doi.org/10.3390/agronomy10091415

Ojeda-Silvera CM, Murillo-Amador B, Nieto-Garibay A, Troyo-Diéguez E, Reynaldo-Escobar lM, Ruíz-Espinoza FH, García-Hernández JL (2015). Emergencia y crecimiento de plántulas de variedades de albahaca (Ocimum basilicum L.) sometidas a estrés hídrico [Emergence and growth of seedlings of varieties of basil (Ocimum basilicum L.) subjected to water stress]. Ecosistemas y Recursos Agropecuarios 2(5):151-161.

Ortas I, Rafique M, Çekiç FÖ (2021). Do mycorrhizal fungi enable plants to cope with abiotic stresses by overcoming the detrimental effects of salinity and improving drought tolerance? In Shrivastava N, Mahajan S, Varma A (Eds). Symbiotic Soil Microorganisms. Springer International Publishing Vol. 60, pp 391-428. https://doi.org/10.1007/978-3-030-51916-2_23

Pan J, Huang C, Peng F, Zhang W, Luo J, Ma S, Xue X (2020). Effect of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria (PGPR) inoculations on Elaeagnus angustifolia L. in saline soil. Applied Sciences 10(3):945. https://doi.org/10.3390/app10030945

Peccatti A, Rovedder APM, Steffen GPK, Maldaner J, Missio EL, Witt CS, … Dalcul LP (2019). Effect of Trichoderma spp. On the propagation of Maytenus ilicifolia Mart. former Reissek. Journal of Agricultural Science 11(3):435. https://doi.org/10.5539/jas.v11n3p435

Quiroga M, Agüero D, Zapata R, Busilacchi H (2015). Activadores de crecimiento y biofertilizantes como alternativa al uso de fertilizantes químicos en cultivo de chía (Salvia hispanica L.) [Growth activators and biofertilizers as an alternative to the use of chemical fertilizers in Chia (Salvia hispanica L.) cultivation]. Energías Renovables y Medio Ambiente 35:33-40.

Riahi L, Cherif H, Miladi S, Neifar M, Bejaoui B, Chouchane H, … Cherif A (2020). Use of plant growth promoting bacteria as an efficient biotechnological tool to enhance the biomass and secondary metabolites production of the industrial crop Pelargonium graveolens L’Hér. Under semi-controlled conditions. Industrial Crops and Products 154:112721. https://doi.org/10.1016/j.indcrop.2020.112721

Rivera RA, Martin GM, Simó JE, Pentón G, Garcia-Rubido M, Ramirez JF, … Bustamante C (2020). Benefits of joint management of green manure and mycorrhizal inoculants in crop production. Tropical and Subtropical Agroecosystems 23(3):3. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3294

Salome-abarca LF, Cruz EC, Vásquez AL, Nava AD, Palemon FA, Castro EH, … Cabañas JNS (2015). Biochemical characterization, antioxidant and antibacterial activity of aromatic plants from Guerrero, Mexico. Weber Medicinal Plant Research 1(2):239-246.

Sánchez E, Ruiz JM, Romero L, Preciado-Rangel P, Flores-Córdova MA, Márquez-Quiroz C, … Márquez-Quiroz C (2018). Son los pigmentos fotosintéticos buenos indicadores de la relación del nitrógeno, fósforo y potasio en frijol ejotero? [Are photosynthetic pingments good indicators of the nitrogen, phosphorus and potassium ratio in green beans?] Ecosistemas y Recursos Agropecuarios 5(15):387-398. https://doi.org/10.19136/era.a5n15.1757

Sánchez -Verdugo C, Avilés-Quevedo S (2012). Fuentes de financiamiento y apoyo para la realización de proyectos de investigación, desarrollo e innovación (IDTi) [Sources of financing and support for carrying out research, development and innovation projects]. Proyecto SAGARPA-CONACyT 126183 (Ed). Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur, México pp 24.

Retrieved 2020 December 11 from https://diplomadoinvestigacionites.files.wordpress.com/2014/08/fuentes-financiamiento-proyectos-investigacion-tecnologia.pdf

Sharma V, Salwan R, Sharma PN (2017). The comparative mechanistic aspects of Trichoderma and probiotics: Scope for future research. Physiological and Molecular Plant Pathology 100:84-96. https://doi.org/10.1016/j.pmpp.2017.07.005

Singh A, Chaubey R, Srivastava S, Kushwaha S, Pandey R (2021). Beneficial root microbiota: Transmogrifiers of secondary metabolism in plants. In Singh KP, Jahagirdar S, Sarma BK (Eds). Emerging Trends in Plant Pathology. Springer, pp 343-365. https://doi.org/10.1007/978-981-15-6275-4_16

Singh S, Tripathi A, Chanotiya CS, Barnawal D, Singh P, Patel VK, Vajpayee P, Kalra A (2020). Cold stress alleviation using individual and combined inoculation of ACC deaminase producing microbes in Ocimum sanctum. Environmental Sustainability 3(3):289-301. https://doi.org/10.1007/s42398-020-00118-w

Steiner A A (1984). The universal nutrient solution. In 6. International Congress on Soilless Culture, Lunteren (Netherlands), 29 Apr-5 May 1984. ISOSC, pp 633-650.

Stewart A, Hill R (2014). Chapter 31-Applications of Trichoderma in plant growth promotion. In Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (Eds). Biotechnology and Biology of Trichoderma. Elsevier, pp, 415-428. https://doi.org/10.1016/B978-0-444-59576-8.00031-X

Suchitra R, Rajaram K, Arunkumar N, Kumar DSS (2020). Contribution of beneficial fungi for maintaining sustainable plant growth and soil fertility. In Varma A, Tripathi S, Prasad R (Eds). Plant Microbe Symbiosis. Springer International Publishing, pp 105-113. https://doi.org/10.1007/978-3-030-36248-5_6

Sun M, Yuan D, Hu X, Zhang D, Li Y (2020). Effects of mycorrhizal fungi on plant growth, nutrient absorption and phytohormones levels in tea under shading condition. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(4):2006-2020. https://doi.org/10.15835/nbha48412082

Tamayo-Aguilar Y, Riera-Nelson MC, Terry-Alfonso E, Juárez-López P, Rodríguez-Matos Y (2019). Respuesta de Vigna unguiculata (L) Walp ante la aplicación de bioproductos en condiciones de huertos intensivos [Response of Vigna unguiculata (L) Walp to the application of bioproducts in conditions of intensive orchards]. Acta Agronómica 68(1):41-46. https://doi.org/10.15446/acag.v68n1.72797

Tian L, Lin X, Tian J, Ji L, Chen Y, Tran L, Tian C (2020). Research advances of beneficial microbiota associated with crop plants. International Journal of Molecular Sciences 21(1792):2-18. https://doi.org/10.3390/ijms21051792

Downloads

Published

2021-11-02

How to Cite

TAMAYO-AGUILAR, Y., JUAREZ-LOPEZ, P. ., CHAVEZ-GARCIA, J. A., ALIA-TEJACAL, I. ., GUILLEN-SANCHEZ, D. ., PEREZ-GONZALEZ, J. O., LOPEZ-MARTINEZ, V. ., RUEDA-BARRIENTOS, M. C., & BAQUE-FUENTES, O. . (2021). Beneficial microorganisms enhance the growth of basil (Ocimum basilicum L.) under greenhouse conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 12452. https://doi.org/10.15835/nbha49412452

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49412452

Most read articles by the same author(s)