Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans

  • Nayely J. GUTIÉRREZ-RUELAS Centro de Investigación en Alimentación y Desarrollo A.C., Av. Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias 33089, Chihuahua (MX)
  • Alejandro PALACIO-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo A.C., Av. Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias 33089, Chihuahua (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A.C., Av. Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias 33089, Chihuahua (MX)
  • Ezequiel MUÑOZ-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo A.C., Av. Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias 33089, Chihuahua (MX)
  • Celia CHÁVEZ-MENDOZA Centro de Investigación en Alimentación y Desarrollo A.C., Av. Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias 33089, Chihuahua (MX)
  • Damaris L. OJEDA-BARRIOS Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Carranza y Escorza S/N, Col. Centro, Chihuahua 31000, Chihuahua (MX)
  • María A. FLORES-CÓRDOVA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Carranza y Escorza S/N, Col. Centro, Chihuahua 31000, Chihuahua (MX)
Keywords: bean, efficiency, iron, micronutrients, nano-fertilizers, productivity

Abstract

Nano-fertilizers (Nfs) have the potential to revolutionize agricultural systems through nanostructures ranging from 1 to 100 nm that address environmental responses and a more targeted biological demand. The purpose of this work was to study the impact of the foliar application of nanoparticles (NPs), sulfate and iron chelate on the growth, yield and assimilation of nitrogen in green beans. The iron was applied foliar in three different ways: Iron oxide nanoparticles (Fe2O3), ferric sulfate (Fe2(SO4)3) and iron chelate (Fe-EDDHA) in doses of 0, 25, 50, 100 and 200 ppm. The treatments that produced a higher total biomass increase were NPs and Fe-EDDHA at 50 ppm, with increases of 37% and 47% respectively compared to the control (with no application of Fe). Regarding the in vivo nitrate reductase activity, significant differences were obtained, particularly in the NPs and Fe-EDDHA treatment, with increases of 71% and 72% respectively. NPs at low doses favored maximum fruit production with increases of 88% in comparison to the control. Finally, it is concluded that the optimal doses that enhanced total biomass, production and assimilation of nitrogen were Fe2(SO4)3 at 25 ppm, Fe-EDDHA at 100 ppm and Fe2O3 at 25 ppm. The efficiency of foliar absorption of iron was found in treatments with Fe2O3 at 50 and 100 ppm. The foliar absorption efficiency of NPs offers sustainable alternatives to increase the productivity of the green bean.

Metrics

Metrics Loading ...

References

Arizmendi-Galicia N, Rivera-Ortiz P, Cruz-Salazar FDL, Castro-Meza BI, Garza-Requena FDL (2011). Lixiviación de hierro quelatado en suelos calcáreos [Leaching of chelated iron in calcareous soils]. Terra Latinoamericana 29(3):231-237. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792011000300231

Askary M, Amirjani MR, Saberi T (2017). Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus. Journal of Plant Nutrition 40(7):974-982. https://doi.org/10.1080/01904167.2016.1262399

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Drostkar E, Talebi R, Kanouni H (2016). Foliar application of Fe, Zn and NPK nano-fertilizers on seed yield and morphological traits in chickpea under rainfed condition. Journal of Resources and Ecology 4:221-228. http://ecologyresearch.info/documents/EC0091.pdf

Eichert T, Kurtz A, Steiner U, Goldbach HE (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Physiologia Plantarum 134(1):151-160. https://doi.org/10.1111/j.1399-3054.2008.01135.x

Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2013). Assessment of concentrations of nano and bulk iron oxide particles on early growth of wheat (Triticum aestivum L.). Annual Research and Review in Biology 3(4):752-761. https://journalarrb.com/index.php/ARRB/article/view/24882

Fernández V, Eichert T, Del Río V, López-Casado G, Heredia-Guerrero JA, Abadía A, ... Abadía J (2008). Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: physiological implications. Plant and Soil 311(1):161-172. https://doi.org/10.1007/s11104-008-9667-4

Fernández V, Sotiropoulos T, Brown P (2015). Fertilización foliar. Principios científicos y prácticas de campo. Asociación Internacional de la Industria de Fertilizantes (IFA). Paris, Francia. pp 49-82.

Ghafari H, Razmjoo J (2013). Effect of foliar application of nano-iron oxidase, iron chelate and iron sulphate rates on yield and quality of wheat. International Journal of Agronomy and Plant Production 4(11):2997-3003. http://www.ijappjournal.com/wp-conten

Hageman RH, Hucklesby DP (1971). Nitrate reductase from higher plants. Methods in Enzymology 23:491-503. https://doi.org/10.1016/S0076-6879(71)23121-9

Kandpal ND, Sah N, Loshali R, Joshi R, Prasad J (2014). Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. Journal of Scientific and Industrial Research 73:87-90. http://nopr.niscair.res.in/handle/123456789/26444

Kanwar MK, Sun S, Chu X, Zhou J (2019). Impacts of metal and metal oxide nanoparticles on plant growth and productivity. In: Husen A, Iqbal M (Eds). Nanomaterials and Plant Potential. Springer, Cham. https://doi.org/10.1007/978-3-030-05569-1_15

Karacan MS, Aslantaş N (2008). Simultaneous preconcentration and removal of iron, chromium, nickel with N, N′-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES. Journal of Hazardous Materials 155(3):551-557. https://doi.org/10.1016/j.jhazmat.2007.11.107

Liu R, Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514:131-139.

Mahajan R, Zargar SM, Aezum AM, Farhat S, Gani M, Agrawal GK, Rakwal R (2015). Evaluation of iron, zinc, and protein contents of common bean (Phaseolus vulgaris L.) genotypes: a collection from Jammu & Kashmir, India. Legume Genomics and Genetics 6(2):1-7. https://doi.org/10.5376/lgg.2015.06.0002

Mohammad GH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013). Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science and Technology 47(18):10645-10652. https://doi.org/10.1021/es402249b

Nasiri Y, Zehtab-Salmasi S, Nasrullahzadeh S, Najafi N, Ghassemi-Golezani K (2010). Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). Journal of Medicinal Plants Research 4(17):1733-1737. https://doi.org/10.5897/JMPR10.083

Panwar J, Jain N, Bhargaya A, Akhtar M, Yun Y (2012). Positive effect of zinc oxide nanoparticles on tomato plants: a step towards developing nano-fertilizers. In: International Conference on Environmental Research and Technology (ICERT), Malaysia.

Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009). Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. The Plant Journal 57(3):400-412. https://doi.org/10.1111/j.1365-313X.2008.03698.x

Rawat M, Nayan R, Negi B, Zaidi MGH, Arora S (2017). Physio-biochemical basis of iron-sulfide nanoparticle induced growth and seed yield enhancement in B. juncea. Plant Physiology and Biochemistry 118:274-284. https://doi.org/10.1016/j.plaphy.2017.06.021

Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, ... Zhu S (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science 7: 815. https://doi.org/10.3389/fpls.2016.00815

Rui M, Ma C, White JC, Hao Y, Wang Y, Tang X, ... Xing B (2018). Metal oxide nanoparticles alter peanut (Arachis hypogaea L.) physiological response and reduce nutritional quality: a life cycle study. Environmental Science: Nano 5(9):2088-2102. https://doi.org/10.1039/C8EN00436F

Sánchez E, Rivero RM, Ruiz JM, Romero L (2004). Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Scientia Horticulturae 99(3-4):237-248. https://doi.org/10.1016/S0304-4238(03)00114-6

Sánchez E, Soto JM, Ruiz JM, Romero L (2006). Asimilación de nitrógeno en raíces y hojas de frijol ejotero: deficiencia vs toxicidad de nitrógeno [Nitrogen assimilation in green bean roots and leaves: nitrogen deficiency vs toxicity]. Revista Fitotecnia Mexicana 29(3):187-195.

Servin AD, White JC (2016). Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 1:9-12. https://doi.org/10.1016/j.impact.2015.12.002

Sharma P, Jha AB, Dubey RS, Pessarakli M (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037. https://doi.org/10.1155/2012/217037

Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010). Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Scientia Biologicae 2(2):112-113. https://doi.org/10.15835/nsb224667

Sida-Arreola JP, Sánchez-Chávez E, Ávila-Quezada GD, Zamudio-Flores PB, Acosta MC (2015). Iron biofortification and its impact on antioxidant system, yield and biomass in common bean. Plant, Soil and Environment 61(12):573-576. https://doi.org/10.17221/643/2015-PSE

Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of Nanoparticles in Plants. In: Siddiqui M, Al-Whaibi M, Mohammad F (Eds). Nanotechnology and Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-14502-0_2

Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015). Nano-fertilizers and their smart delivery system. In: Nanotechnologies in Food and Agriculture. Springer, Cham., pp 88-101. https://doi.org/10.1007/978-3-319-14024-7_4

Suárez-Martínez SE, Ferriz-Martínez RA, Campos-Vega R, Elton-Puente JE, de la Torre Carbot K, García-Gasca T (2016). Bean seeds: leading nutraceutical source for human health. CyTA-Journal of Food 14(1):131-137. https://doi.org/10.1080/19476337.2015.1063548

Szarka A, Tomasskovics B, Bánhegyi G (2012). The ascorbate-glutathione-α-tocopherol triad in abiotic stress response. International Journal of Molecular Sciences 13(4):4458-4483. https://doi.org/10.3390/ijms13044458

Van Hoewyk D, Abdel-Ghany SE, Cohu CM, Herbert SK, Kugrens P, Pilon M, Pilon-Smits EA (2007). Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proceedings of the National Academy of Sciences 104(13):5686-5691. https://doi.org/10.1073/pnas.0700774104

Wang Y, Hu J, Dai Z, Li J, Huang J (2016). In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiology and Biochemistry 108:353-360. https://doi.org/10.1016/j.plaphy.2016.08.003

Wellburn AR (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144(3):307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

Yaneva IA, Baydanova VD, Vunkova-Radeva RV (2000). Nitrate reductase activation state in leaves of molybdenum-deficient winter wheat. Journal of Plant Physiology 157(5):495-501. https://doi.org/10.1016/S0176-1617(00)80104-2

Ye L, Li L, Wang L, Wang S, Li S, Du J, ... Shou H (2015). MPK3/MPK6 are involved in iron deficiency-induced ethylene production in Arabidopsis. Frontiers in Plant Science 6: 953. https://doi.org/10.3389/fpls.2015.00953

Yemm EW, Cocking EC, Ricketts RE (1955). The determination of amino-acids with ninhydrin. Analyst 80(948):209-214. https://doi.org/10.1039/AN9558000209

Zhang Y, Dai B, Deng Y, Zhao Y (2016). In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus). Food Chemistry 203:258-266. https://doi.org/10.1016/j.foodchem.2016.02.072

Zia-ur-Rehman M, Naeem A, Khalid H, Rizwan M, Ali S, Azhar M (2018). Responses of plants to iron oxide nanoparticles. In: Nanomaterials in Plants, Algae, and Microorganisms. Academic Press, pp 221-238. https://doi.org/10.1016/B978-0-12-811487-2.00010-4

Published
2021-09-27
How to Cite
GUTIÉRREZ-RUELAS, N. J., PALACIO-MÁRQUEZ, A., SÁNCHEZ, E., MUÑOZ-MÁRQUEZ, E., CHÁVEZ-MENDOZA, C., OJEDA-BARRIOS, D. L., & FLORES-CÓRDOVA, M. A. (2021). Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12437. https://doi.org/10.15835/nbha49312437
Section
Research Articles
CITATION
DOI: 10.15835/nbha49312437