Plant species diversity of the wet meadows under natural and anthropogenic interventions: The case of the Lakes Amvrakia and Ozeros (W. Greece)

Authors

  • Anastasios ZOTOS University of Patras, Department of Biosystems and Agricultural Engineering, 30200 Messolonghi (GR)
  • Chariklia KOSMA University of Patras, Department of Biosystems Administration of Food and Agricultural Enterprises, 30100 Agrinio (GR)
  • Vassilios TRIANTAFYLLIDIS University of Patras, Department of Biosystems Administration of Food and Agricultural Enterprises, 30100 Agrinio (GR)
  • Ioanna KAKABOUKI Agricultural University of Athens, Department of Crop Science, Laboratory of Agronomy, 75 Iera Odos str., 11855 Athens (GR)
  • George KEHAYIAS University of Patras, Department of Food Science and Technology, 30100 Agrinio (GR)
  • Ioannis ROUSSIS Agricultural University of Athens, Department of Crop Science, Laboratory of Agronomy, 75 Iera Odos str., 11855 Athens (GR)
  • Antonios MAVROEIDIS Agricultural University of Athens, Department of Crop Science, Laboratory of Agronomy, 75 Iera Odos str., 11855 Athens (GR)
  • Alexandros TATARIDAS Agricultural University of Athens, Department of Crop Science, Laboratory of Agronomy, 75 Iera Odos str., 11855 Athens (GR)
  • Dimitrios BILALIS Agricultural University of Athens, Department of Crop Science, Laboratory of Agronomy, 75 Iera Odos str., 11855 Athens (GR)

DOI:

https://doi.org/10.15835/nbha49312435

Keywords:

land cover/use, soil properties, species richness, wet meadows, wetland

Abstract

The Lakes Amvrakia and Ozeros (W. Greece) belong to the western chain of Greek wetlands running along the coast of the Ionian Sea. They are both natural lakes belonging to the Natura 2000, Site of Community Importance (pSCI) and are characterized by high ecological value. Wet meadows are typical habitat types of these wetland ecosystems which are in contact with rural ecosystems which they interact with. Due to the high conservation value of these habitat types, in the framework of this study the flora of the wet meadows was recorded and a floristic analysis concerning chorology, life forms and habitat preferences was made. A total number of 152 taxa was found in the wet meadows of both lakes from which only 47 taxa were common. The families with the greatest number of species were Fabaceae (22 taxa), Asteraceae (14 taxa) and Poaceae (9 taxa) for the wet meadow vegetation of the Lake Amvrakia and Fabaceae, Poaceae (17 and 13 taxa, respectively) for the Lake Ozeros. In both lakes the prevalence of the Therophytes is evident, while the life forms of Chamephytes and Aquatics were absent from the Lake Amvrakia. From the results of the canonical correspondence analysis among species, sampling plots and selected environmental variables, a clear separation between species and sampling plots was found, presenting strong correlation with specific edaphic parameters (pH, CaCO3, EC, , Total N, SOC and ). These edaphic properties, as a result of natural and anthropogenic interventions, seem to play an important role in the wet meadows plant species distribution pattern.

References

Blumler MA (2018). What is the ‘true’ Mediterranean-type vegetation? In: Greller AM, Fujiwara K, Pedrotti F (Eds). Geographical Changes in Vegetation and Plant Functional Types. Springer International Publishing, Cham pp 117-139. https://doi.org/10.1007/978-3-319-68738-4_6

Bobo KS, Waltert M, Moses Sainge N, Njokagbor J, Fermon H, Mühlenberg M (2006). From forest to farmland: Species richness patterns of trees and understory plants along a gradient of forest conversion in Southwestern Cameroon. Biodiversity & Conservation 15:4097-4117. https://doi.org/10.1007/s10531-005-3368-6

Bouyoucos GJ (1962). Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal 54(5):464-465.

Bornmüller J (1928). Ergebnis einer botanischen Reise nach Griechenland im Jahre 1926 (Zante, Cephallonia, Achaia, Phokis, Aetolien) [Results of a botanical voyage to Greece in the year 1926 (Zante, Cephallonia, Achaia, Phokis, Aetolia)]. Repertorium Specierum Novarum Regni Vegetabilis 25:161-203 & 270-350.

Bremmer JM, Keeney DR (1966). Exchangeable ammonium, nitrate, and nitrite by extraction–distillation methods. Soil Science Society of American Proceedings 30:577-582.

Cain SA (1950). Life-form and phytoclimates. Botanical Review 16(1):1-32.

Chalkia E, Kehayias G (2013). Zooplankton community dynamics and environmental factors in Lake Ozeros (Greece). Mediterranean Marine Science 14(3):32-41. https://doi.org/10.12681/mms.534

Chalkia E, Zacharias I, Thomatou A-A, Kehayias G (2012). Zooplankton dynamics in a gypsum karst lake and interrelation with the abiotic environment. Biologia 67:151-163. https://doi.org/10.2478/s11756-011-0147-6

Chytrý M, Tichý L, Roleček J (2003). Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobotanica 38(4): 429-442. https://doi.org/10.1007/BF02803250

Chytrý M, Danihelka J, Axmanová I, Božková J, Hettenbergerová E, Li, CF, ... Zelený D (2010). Floristic diversity of an eastern Mediterranean dwarf shrubland: the importance of soil pH. Journal of Vegetation Science 21(6):1125-1137.

Cong WF, van Ruijven J, Mommer L, De Deyn GB, Berendse F, Hoffland E (2014). Plant species richness promotes soil carbon and nitrogen stocks in grasslands without legumes. Journal of Ecology 102(5):1163-1170. https://doi.org/10.1111/1365-2745.12280

Danielidis DB, Spartinou M, Economou-Amilli A (1996). Limnological survey of Lake Amvrakia, western Greece. Hydrobiologia 318(3):207-218.

Dimopoulos P, Raus T, Bergmeier E, Constantinidis T, Iatrou G, Kokkini S, ... Tzanoudakis D (2013). Vascular plants of Greece: An annotated checklist. Botanic Garden and Botanical Museum Berlin, Dahlem, Berlin; Hellenic Botanical Society, Athens.

Dimopoulos P, Raus T, Bergmeier E, Constantinidis T, Iatrou G, Kokkini S, Tzanoudakis D (2016). Vascular plants of Greece: An annotated checklist. Supplement. Willdenowia 46(3):301-347. https://doi.org/10.3372/wi.46.46303

Ellenberg HH (1988). Vegetation ecology of central Europe. Cambridge University Press.

European Digital Archive of Soil Maps (EUDASM) (2015). Soil Map of Greece, Publisher by OPEKEPE and Aristotle University of Thessaloniki.

Fischer C, Leimer S, Roscher C, Ravenek J, de Kroon H, Kreutziger Y, ... Hildebrandt A (2019). Plant species richness and functional groups have different effects on soil water content in a decade‐long grassland experiment. Journal of Ecology 107(1):127-141. https://doi.org/10.1111/1365-2745.13046

Galatowitsch SM, Whited DC, Tester JR (1998). Development of community metrics to evaluate recovery of Minnesota wetlands. Journal of Aquatic Ecosystem Stress and Recovery 6(3):217-234.

Gough L, Osenberg CW, Gross KL, Collins SL (2000). Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89(3):428-439. https://doi.org/10.1034/j.1600-0706.2000.890302.x

James C, Fisher J, Russell V, Collings S, Moss B (2005). Nitrate availability and hydrophyte species richness in shallow lakes. Freshwater Biology 50(6):1049-1063. https://doi.org/10.1111/j.1365-2427.2005.01375.x

Halácsy E. von (1894). Beitrag zur Flora von Aetolien und Acarnanien [Contribution to the flora of Aetolia and Acarnania]. Denkschriften der Kaiserlichen Akademie der Wissenschaften / Mathematisch-Naturwissenschaftliche Classe 61:309-322.

Halácsy E von (1901-1904). Conspectus florae Graecae (1-3). Lipsiae.

Koumpli-Sovantzi L (1983). Studies on the Tracheophytes in the lakes and adjacent hydrobiotopes of Aetoloakarnania, Greece. Taxonomic, floristic, phytogeographical and ecological research. PhD thesis, University of Athens. [in Greek]

Kosma C, Balomenou G, Salahas G, Deligiannakis Y (2009). Electrolyte ion effects on Cd2+ binding at Al2O3 surface: Specific synergism versus bulk effects. Journal of Colloid and Interface Science 331(2):263-274.

Lazarina M, Charalampopoulos A, Psaralexi M, Krigas N, Michailidou DE, Kallimanis AS, Sgardelis SP (2019). Diversity patterns of different life forms of plants along an elevational gradient in Crete, Greece. Diversity 11(10):200. https://doi.org/10.3390/d11100200

Lougheed VL, McIntosh MD, Parker CA, Stevenson RJ (2008). Wetland degradation leads to homogenization of the biota at local and landscape scales. Freshwater Biology 53(12):2402-2413. https://doi.org/10.1111/j.1365-2427.2008.02064.x

McKinney ML (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation 127(3):247-260. https://doi.org/10.1016/j.biocon.2005.09.005

Mann LK (1986). Changes in soil carbon storage after cultivation. Soil Science 142: 279-288.

McLean EO (1983). Soil pH and lime requirement. Methods of soil analysis: Part 2 Chemical and Microbiological Properties 9:199-224.

Moore DR, Keddy PA, Gaudet CL, Wisheu IC (1989). Conservation of wetlands: do infertile wetlands deserve a higher priority? Biological Conservation 47(3):203-217.

Nelson DW, Sommers L (1982). Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and Microbiological Properties 539-579.

Nilsson C, Grelsson G, Johansson M, Sperens U (1989). Patterns of plant species richness along riverbanks. Ecology 70(1):77-84. https://doi.org/10.2307/1938414

Olsen SR (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.

Overbeck J, Anagnostidis K, Economou-Amilli A (1982). A limnological survey of three Greek lakes: Trichonis, Lyssimachia and Amvrakia. Archiv für Hydrobiologie 95:365-394.

Panitsa M, Tzanoudakis D, Sfenthourakis S (2008). Turnover of plants on small islets of the eastern Aegean Sea within two decades. Journal of Biogeography 35(6):1049-1061. https://doi.org/10.1111/j.1365-2699.2007.01846.x

Papastergiadou E (1990). Phytosociological and ecological studies of aquatic macrophytes (hydrophytes). Northern Greece. PhD Thesis, Aristotelian University of Thessaloniki.

Papastergiadou ES, Retalis A, Kalliris P, Georgiadis T (2007). Land use changes and associated environmental impacts on the Mediterranean shallow Lake Stymfalia, Greece. In: Shallow Lakes in a changing world. Springer, Dordrecht, pp 361-372.

Pavlidis G (1985). Geobotanical Study of the Prespa National Park. University of Thessaloniki, Thessaloniki.

Perzanowska J, Korzeniak J, Chmura D (2019). Alien species as a potential threat for Natura 2000 habitats: a national survey. PeerJ 7:e8032.

Pyšek P, Chocholousková Z, Pyšek A, Jarošík V, Chytrý M, Tichý L (2004). Trends in species diversity and composition of urban vegetation over three decades. Journal of Vegetation Science 15(6):781-788. https://doi.org/10.1111/j.1654-1103.2004.tb02321.x

Quantum GIS Development Team (2020). QGIS Geographic Information System. Open-Source Geospatial Foundation Project. Retrieved 2021 July 2 from http://qgis.osgeo.org

Rhoades JD (1982). Soluble salts. In: Page AL (Ed). Methods of soil analysis. Part II. Madison: American Society of Agronomy Monograph No. 9, pp 167-179.

Rodeghiero M, Rubio A, Díaz Pinés E, Romanyà J, Marañón Jiménez S, Levy GJ, ... Sirca C (2011). Soil carbon in Mediterranean ecosystems and related management problems. Soil carbon in sensitive European ecosystems: from science to land management 175-218.

Raunkiaer C (1934). The life forms of plants and statistical plant geography. Being the collected papers of C. Raunkiaer. Oxford University Press, London.

Sarika-Hatzinikolaou M (1999). Floristic and phytosociological study on aquatic ecosystems of Epirus (NW Greece). PhD thesis, University of Athens. [in Greek]

Schuster B, Diekmann M (2003). Changes in species density along the soil pH gradient—evidence from German plant communities. Folia Geobotanica 38(4):367-379. https://doi.org/10.1007/BF02803245

Smith RL (1980). Ecology and field biology. Harper and Row Publishers, New York.

Soil Science Division Staff (2017). Soil Survey Manual. Ditzler C, Scheffe K, Monger HC (Eds). USDA Handbook 18. Government Printing Office, Washington, D.C.

Soons MB, Hefting MM, Dorland E, Lamers LP, Versteeg C, Bobbink R (2017). Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biological Conservation 212:390-397. https://doi.org/10.1016/j.biocon.2016.12.006

Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004). Impact of nitrogen deposition on the species richness of grasslands. Science 303(5665):1876-1879. https://doi.org/10.1126/science.1094678

Ter Braak CJ (1987). The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69(1):69-77.

Ter Braak CT, Smilauer P (1998). CANOCO reference manual and user's guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, New York.

Thomatou A-A, Triantafyllidou M, Chalkia E, Kehayias G, Konstantinou I, Zacharias I (2013). Land use changes do not rapidly change the trophic state of a deep lake. Amvrakia Lake, Greece. Journal of Environmental Protection 4(5):426-434. https://doi.org/10.4236/jep.2013.45051

Triantafyllidis V, Zotos A, Kosma C, Kokkotos E (2020). Effect of land-use types on edaphic properties and plant species diversity in Mediterranean agroecosystem. Saudi Journal of Biological Sciences 27(12):3676-3690. https://doi.org/10.1016/j.sjbs.2020.08.012

Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, ... Webb DA (1968-80, 1993). Flora Europaea 1-5. Cambridge University Press, Cambridge, UK.

Zacharias I, Bertachas I, Skoulikidis N, Koussouris T (2002). Greek lakes: Limnological overview. Lakes & Reservoirs: Research & Management 7(1):55-62. https://doi.org/10.1046/j.1440-1770.2002.00171.x

Zelnik I (2012). The presence of invasive alien plant species in different habitats: case study from Slovenia. Acta Biologica Slovenica 55(2):25-38.

Zelnik I, Čarni A (2013). Plant species diversity and composition of wet grasslands in relation to environmental factors. Biodiversity and Conservation 22(10):2179-2192. https://doi.org/10.1007/s10531-013-0448-x

Zervas D, Tsiaoussi V, Kallimanis AS, Dimopoulos P, Tsiripidis I (2019). Exploring the relationships between aquatic macrophyte functional traits and anthropogenic pressures in freshwater lakes. Acta Oecologica 99:103443.

Zorrilla-Miras P, Palomo I, Gómez-Baggethun E, Martín-López B, Lomas PL, Montes C (2014). Effects of land-use change on wetland ecosystem services: A case study in the Doñana marshes (SW Spain). Landscape and Urban Planning 122:160-174. https://doi.org/10.1016/j.landurbplan.2013.09.013

Zotos A (2006). Flora, vegetation ecology and management proposals for the wet meadows and reed thickets of the lakes Trichonida and Lysimachia (W. Greece). PhD Thesis, University of Ioannina. [in Greek]

Downloads

Published

2021-09-03

How to Cite

ZOTOS, A., KOSMA, C., TRIANTAFYLLIDIS, V. . ., KAKABOUKI, I., KEHAYIAS, G., ROUSSIS, I. ., MAVROEIDIS, A. ., TATARIDAS, A., & BILALIS, D. (2021). Plant species diversity of the wet meadows under natural and anthropogenic interventions: The case of the Lakes Amvrakia and Ozeros (W. Greece). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12435. https://doi.org/10.15835/nbha49312435

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49312435

Most read articles by the same author(s)

1 2 3 4 > >>