Salicylic acid and nutrient immersion to maintain apple quality and bioactive compounds in postharvest

  • Julio C. OVIEDO-MIRELES Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Universidad Campus 1, C.P. 31530, Chihuahua (MX)
  • Juan M. SOTO-PARRA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Universidad Campus 1, C.P. 31530, Chihuahua (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Delicias, C.P. 33088, Chihuahua (MX)
  • Rosa M. YÁÑEZ-MUÑOZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Universidad Campus 1, C.P. 31530, Chihuahua (MX)
  • Ramona PÉREZ-LEAL Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Universidad Campus 1, C.P. 31530, Chihuahua (MX)
  • Linda C. NOPERI-MOSQUEDA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Universidad Campus 1, C.P. 31530, Chihuahua (MX)
Keywords: controlled atmosphere, chilling, factors, Malus domestica, postharvest

Abstract

The world production of apples in the 2019 cycle reached 7´620,288 tonnes. For marketing purposes and to supply the demand, apple fruits need to be stored for different periods under refrigerated conditions. However, in the market, the shelf life of the fruit is short, the quality decreases in postharvest due to the dynamic changes of its physicochemical properties, which cannot be stopped, but can be slowed down to improve its shelf life. Postharvest treatments by immersing apple fruit in salicylic acid (SA) and nutrients are an innovative technological alternative to maintain their quality. In this study, 5 concentrations were tested for the immersion of apple fruits cv ‘Golden Delicious’, using a 56 factorial arrangement delimited to 25 treatments, using the Taguchi L25 structure: SA 0 - 1.440 mM, potassium (K) 0 - 2.250, calcium (Ca) 0 - 31.500 mM, cobalt (Co) 0 - 0.180 mM, molybdenum (Mo) 0 - 0.0900 mM and magnesium (Mg) 0 - 0.0900 mM. The study was conducted in the municipality of Cuauhtémoc, Chihuahua, Mexico. After 7 months of storage and 13 days of shelf life, the combination of K, Ca, SA and Co with the appropriate concentration values can maintain the quality variables and bioactive compounds at the desired optimum. It is concluded that the quality variables; firmness, juice percentage, juice density, titratable acidity and total soluble solids and the bioactive compounds; total phenols and antioxidant capacity can be maintained at the desired optimum.

Metrics

Metrics Loading ...

References

Asghari M, Morteza SA (2010). Impact of salicylic acid on postharvest physiology of horticultural crops. Trends in Food Science and Technology 21(10):502-509. https://doi.org/10.1016/j.tifs.2010.07.009

Bal E (2016). Combined treatment of modified atmosphere packaging and salicylic acid improves postharvest quality of nectarine (Prunus persica L.) Fruit. Journal of Agricultural Science and Technology 18(5):1345-1354.

Bartoshuk LM, Klee HJ (2013). Better fruits and vegetables through sensory analysis. Current Biology 23(9):R374-378. https://doi.org/10.1016/j.cub.2013.03.038

Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Science and Technology 28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Brunetto G, Bastos De Melo GW, Moreno MQ, Tagliavini M (2016). The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Revista Brasileira de Fruticultura 37(4):1089-1104. https://doi.org/10.1590/0100-2945-103/15

Casero T, Benavides A, Puy J, Recasens I (2004). Relationships between leaf and fruit nutrients and fruit quality attributes in Golden smoothee apples using multivariate regression techniques. Journal of Plant Nutrition 27(2):313-324. https://doi.org/10.1081/PLN-120027656

Cepeda-Castañeda I, Saucedo-Veloz C, Colinas-León MT, Rodríguez-Alcázar J (2014). Evaluación de tratamientos pre y postcosecha con CaCl2 en la frigoconservación y calidad de manzana cv. ‘Golden Delicious’. Revista Iberoamericana de Tecnología Postcosecha 15(1):54-60.

Conway WS, Sams CE, Hickey KD (2002). Pre- and postharvest calcium treatment of apple fruit and its effect on quality. Acta Horticulturae 594:413-419. https://doi.org/10.17660/ActaHortic.2002.594.53

Delong JM, Prange RK, Harrison PA, McRae KB (2000). Comparison of a new apple firmness penetrometer with three standard instruments. Postharvest Biology and Technology 19(3):201-209. https://doi.org/10.1016/S0925-5214(00)00097-1

Dokhanieh AY, Aghdam MS, Fard JR, Hassanpour H (2013). Postharvest salicylic acid treatment enhances antioxidant potential of cornelian cherry fruit. Scientia Horticulturae 154:31-36. https://doi.org/10.1016/j.scienta.2013.01.025

Dong J, Wan G, Liang Z (2010). Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. Journal of Biotechnology 148(2-3):99-104. https://doi.org/10.1016/j.jbiotec.2010.05.009

Farag KM, Nagy NMN (2012). Effect of pre- and postharvest calcium and magnesium compounds and their combination treatments on ‘Anna’ apple fruit quality and shelf life. Journal of Horticultural Science & Ornamental Plants 4(2):155-168.

FAO (2020). Food and Agricultura Organization of the United Nations. Retrieved 2020 May from: http://fao.org/faostat/es/#data/home

Guerra M, Casquero PA (2010). Summer pruning: An ecological alternative to postharvest calcium treatment to improve storability of high-quality apple cv. ‘Reinette du Canada’. Food Science and Technology International 16(4):343-350. https://doi.org/10.1177/1082013210366977

Kazemi M, Aran M, Zamani S (2011). Effect of calcium chloride and salicylic acid treatments on quality characteristics of kiwifruit (Actinidia deliciosa cv. ‘Hayward’) during storage. American Journal of Plant Physiology 6(3):183-189. https://doi.org/10.3923/ajpp.2011.183.189

Kyriacou MC, Rouphael Y (2017). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae 234:463-469. https://doi.org/10.1016/j.scienta.2017.09.046

Lau OL, Yang SF (1976). Inhibition of etylene production by cobaltous ion. Plant Physiology 58(1):114-117. https://doi.org/10.1104/pp.581.114

Lu X, Sun D, Li Y, Shi W, Sun G (2011). Pre- and postharvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Scientia Horticulturae 130(2011):97-101. https://doi.org/10.1016/j.scienta.2011.06.017

Manganaris GA, Vasilakakis M, Diamantidis G, Mignani I (2007). Food chemistry the effect of postharvest calcium application on tissue calcium concentration, quality attributes, incidence of flesh browning and cell wall physicochemical aspects of peach fruits. Food Chemistry 100:1385-1392. https://doi.org/10.1016/j.foodchem.2005.11.036

Mesa K, Serra S, Masia A, Gagliardi F, Bucci D, Musacchi S (2016). Seasonal trends of starch and soluble carbohydrates in fruits and leaves of ‘Abbé Fétel’ pear trees and their relationship to fruit quality parameters. Scientia Horticulturae 211(2016):60-69. https://doi.org/10.1016/j.scienta.2016.08.008

Musacchi S, Serra S (2018). Apple fruit quality: overview on pre-harvest factors. Scientia Horticulturae 234(2018):409-430. https://doi.org/10.1016/j.scienta.2017.12.057

Nautiyal N, Chatterjee Ch, (2004). Molybdenum stress-induced changes in growth and yield of Chickpea. Journal of Plant Nutrition 27(1):173-181. https://doi.org/10.1081/PLN-120027554

Promyou S, Supapvanich S (2016). Effects of salicylic acid immersion on physicochemical quality of Thai papaya fruit ‘Kaek dam’ during storage. Acta Horticulturae 1111:105-112. https://doi.org/10.17660/ActaHortic.2016.1111.16

El-Ramady HR, Domokos-Szabolcsy E, Abdalla NA, Taha HS, Fari M (2015). Postharvest management of fruits and vegetables storage. Sustainable Agriculture Reviews 15:77-78. https://doi.org/10.1007/978-3-319-09132-7_2

Salas-Salazar NA, Molina-Corral FJ, Berlanga-Reyes DL, Romo-Chacón A, Olivas G (2011). Influence of harvest date on the synthesis of volatile compounds in stored fruits of apples ‘Golden Delicious’ and ‘Red Delicious’. Revista Fitotecnia Mexicana 34(4):257-267.

SAS (1989). SAS Institute Inc., SAS / STAT Software: Usage and Reference, Version 6, First Edition, Cary, NC: SAS Institute Inc.

Serra S, Leisso R, Giordani L, Kalcsits L, Musacchi S (2016). Crop load influences fruit quality, nutritional balance, and return bloom in ‘Honeycrisp’ apple. HortScience 51(3):236-44. https://doi.org/10.21273/HORTSCI.51.3.236

Shafiee, M, Taghavi TS, Babalar M (2010). Addition of salicylic acid to nutrient solution combined with postharvest treatments (hot water, salicylic acid, and calcium dipping) improved postharvest fruit quality of strawberry. Scientia Horticulturae 124(2010):40-45. https://doi.org/10.1016/j.scienta.2009.12.004

Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal Enology and Viticulturae 16:144-158.

Supapvanich S, (2015). Effects of salicylic acid incorporated with lukewarm water dips on the quality and bioactive compounds of rambutan fruit (Nephelium lappaceum L.). CMU Journal of Natural Sciences 14(1):23-38. https://doi.org/10.12982/cmujns.2015.0069

Supapvanich S, Mitsang P, Youryon P, Techavuthiporn CH (2018). Postharvest quality maintenance and bioactive compounds enhancement in ‘Taaptimjaan’ wax apple during short term storage by salicylic acid immersion. Horticulture, Environment, and Biotechnology 59(3):373-381. https://doi.org/10.1007/s13580-018-0044-9

Supapvanich S, Promyou S (2013). Efficiency of salicylic acid application on postharvest perishable crops. Editorial Springer Science+Business Media Dordrecht pp 339-354. https://doi.org/10.1007/978-94-007-6428-6

Torres E, Recasens I, Lordan J, Alegre S (2017). Combination of strategies to supply calcium and reduce bitter pit in ‘Golden Delicious’ apples. Scientia Horticulturae 217(2017):179-188. https://doi.org/10.1016/j.scienta.2017.01.028

Soto PJ, Sánchez E, Uvalle M, Yáñez BJX, Montes MRN, Ruíz DF, Romero L (2001). Pre-harvest application dosages of aminoethoxyvinylglycine in relation to ripening, fruit drop and watercore in ‘Red Delicious’ and ‘Golden Delicious’ apples. International Journal of Experimental Botany 171-178.

Valero D, Pérez-Vicente A, Martínez-Romero D, Castillo S, Guillén F, Serrano M (2002). Plum storability improved after calcium and heat postharvest treatments: role of polyamines. Journal of Food Science 67(7):2571-2575. https://doi.org/10.1111/j.1365-2621.2002.tb08778.x

Valero D, Huertas M, Díaz-Mula P, Zapata J, Castillo S, Guillén F, Martínez-Romero D, Serrano M (2011). Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry 59(10):5483-5489. https://doi.org/10.1021/jf200873j

Vanoli M, Buccheri M (2012). Overview of the methods for assessing harvest maturity. Stewart Postharvest Reviews 8:1-11. https://doi.org/10.2212/spr.2012.1.4

Wei Y, Liu Z, Su Y, Liu D, Ye X (2011). Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus. Journal of Food Science 76(2):126-132. https://doi.org/10.1111/j.1750-3841.2010.01987.x

Yfran M, Chabbal M, Píccoli A, Giménez L, Rodríguez V, Martínez G (2017). Fertilización foliar con potasio, calcio y boro. Incidencia sobre la nutrición y calidad de frutos en mandarino Nova. INCA Instituto Nacional de Ciencias Agrícolas Cultivos Tropicales 38(4):22-29.

Published
2021-09-24
How to Cite
OVIEDO-MIRELES, J. C., SOTO-PARRA, J. M., SÁNCHEZ, E., YÁÑEZ-MUÑOZ, R. M., PÉREZ-LEAL, R., & NOPERI-MOSQUEDA, L. C. (2021). Salicylic acid and nutrient immersion to maintain apple quality and bioactive compounds in postharvest. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12409. https://doi.org/10.15835/nbha49312409
Section
Research Articles
CITATION
DOI: 10.15835/nbha49312409