Vanadium stimulates growth and flower production in tomato without affecting seed germination

Authors

  • Atonaltzin GARCÍA-JIMÉNEZ College of Postgraduates in Agricultural Sciences Campus Montecillo, Carretera México-Texcoco, km 36.5, Montecillo, Texcoco, State of Mexico, C. P. 56230
  • Libia I. TREJO-TÉLLEZ College of Postgraduates in Agricultural Sciences Campus Montecillo, Carretera México-Texcoco, km 36.5, Montecillo, Texcoco, State of Mexico, C. P. 56230
  • María G. PERALTA SÁNCHEZ College of Postgraduates in Agricultural Sciences Campus Montecillo, Carretera México-Texcoco, km 36.5, Montecillo, Texcoco, State of Mexico, C. P. 56230
  • Adriana CONTRERAS-OLIVA College of Postgraduates in Agricultural Sciences Campus Córdoba, Carretera Córdoba-Veracruz, km 348, Manuel León, Amatlán de los Reyes, Veracruz, C. P. 94953
  • Fernando C. GÓMEZ-MERINO College of Postgraduates in Agricultural Sciences Campus Córdoba, Carretera Córdoba-Veracruz, km 348, Manuel León, Amatlán de los Reyes, Veracruz, C. P. 94953

DOI:

https://doi.org/10.15835/nbha49412400

Keywords:

beneficial elements, flowering; inorganic biostimulants, plant development, Solanaceae, Solanum lycopersicum

Abstract

DOI: 10.15835/nbha49412400

Vanadium (V) is easily absorbed by plants and has been proposed as a novel beneficial element and inorganic biostimulant, since at low doses it can enhance plant metabolism. However, its effects on the biology of cultivated species have not been fully explored. Therefore, we evaluated the effect of V on tomato (Solanum lycopersicum L.) during seed germination and initial seedling growth. We tested 0, 5, 10, and 15 µM V in seeds during the germination process and in 37-day-old plants over four weeks. The application of V did not alter seed germination percentage. Plant height increased with the application of 5 µM V at 21 days after treatment application (DAT), while root volume increased with the application of 10 µM V at 28 DAT. Stem diameter, number of leaves, and number of flower buds showed the highest values with 10 µM V, while 5 µM V produced higher means in number of leaves as well as fresh and dry biomass weight of flowers. However, the fresh and dry biomass of leaves, stems, and roots decreased significantly with the application of 15 µM V. The total concentrations of amino acids and sugars in leaves, stems, and roots decreased in the treatments with V. We conclude that V is a beneficial element with high potential to be used in the biostimulation of horticultural crops such as tomato.

Metrics

Metrics Loading ...

References

Abedini M, Mohammadian F (2018). Vanadium effects on phenolic content and photosynthetic pigments of sunflower. South Western Journal of Horticulture, Biology and Environment 9(2):77-86.

Aihemaiti A, Jiang J, Gao Y, Meng Y, Zou Q, Yang M, …Tuerhong T (2019). The effect of vanadium on essential element uptake of Setaria viridis’ seedlings. Journal of Environmental Management 237:399-407. https://doi.org/10.1016/j.jenvman.2019.02.054

Akabayov SR, Akabayov B (2014). Vanadate in structural biology. Inorganica Chimica Acta 420:16-23. https://doi.org/10.1016/j.ica.2014.02.010

Altaf MM, Diao XP, ur Rehman A, Imtiaz M, Shakoor A, Altaf MA, … Ghani MU (2020). Effect of vanadium on growth, photosynthesis, reactive oxygen species, antioxidant enzymes, and cell death of rice. Journal of Soil Science and Plant Nutrition 20(4):2643-2656. https://doi.org/10.1007/s42729-020-00330-x

Anani OA, Olomukoro JO (2020). Assessment of metal accumulation and bioaccumulation factor of some trace and heavy metals in freshwater prawn and crab. In: Diarte-Plata G, Escamilla-Montes R (Eds). Crustacea. IntechOpen: London, UK. pp 1-14. https:////doi.org/10.5772/intechopen.88103

ATSDR (Agency for Toxic Substances and Disease Registry) (2012). Toxicological profile for vanadium. In: ATSDR’s Toxicological Profiles; U. S. Department of Health and Human Services. Public Health Service. Atlanta, GA, USA. pp 1-17. https:////doi.org/10.1201/9781420061888_ch158

Bailey RW (1958). The reaction of pentoses with anthrone. The Biochemical Journal 68(4):669-672. https://doi.org/10.1042/bj0680669

Basiouny FM (1984). Distribution of vanadium and its influence on chlorophyll formation and iron metabolism in tomato plants. Journal of Plant Nutrition 7(7):1059-1073. https://doi.org/10.1080/01904168409363265

Carvalho MEA, Castro PRC, Azevedo RA (2020). Hormesis in plants under Cd exposure: From toxic to beneficial element? Journal of Hazardous Materials 384:121434. https://doi.org/10.1016/j.jhazmat.2019.121434

Chen L, Liu JR, Hu WF, Gao J, Yang J (2021). Vanadium in soil-plant system: Source, fate, toxicity, and bioremediation. Journal of Hazardous Materials 405:124200. https://doi.org/10.1016/j.jhazmat.2020.124200

Chételat J, Nielsen SG, Auro M, Carpenter D, Mundy L, Thomas PJ (2021). Vanadium stable isotopes in biota of terrestrial and aquatic food chains. Environmental Science and Technology 55(8):4813-4821. https://doi.org/10.1021/acs.est.0c07509

Eady RR (1989). The vanadium nitrogenase of Azotobacter. Polyhedron 8(13-14):1695-1700. https://doi.org/10.1016/S0277-5387(00)80619-1

Emadian SF, Newton RJ (1989). Growth enhancement of loblolly pine (Pinus taeda L.) seedlings by silicon. Journal of Plant Physiology 134(1):98-103. https://doi.org/10.1016/S0176-1617(89)80209-3

FAOSTAT (2021). Crops. Tomato. World. Production Quantity. Statistic on Tomato. Retrieved 2021 May 31 from http://www.fao.org/faostat/en/#data/QCC

Fortoul TI, Rojas-Lemus M, Rodriguez-Lara V, Gonzalez-Villalva A, Ustarroz-Cano M, Cano-Gutierrez G, … Altamirano-Lozano M (2014). Overview of environmental and occupational vanadium exposure and associated health outcomes: An article based on a presentation at the 8th International Symposium on Vanadium Chemistry, Biological Chemistry, and Toxicology, Washington DC, August 15-18, 2012. Journal of Immunotoxicology 11(1):13-18. https://doi.org/10.3109/1547691X.2013.789940

Gan C, Liu M, Lu J, Yang J (2020). Adsorption and desorption characteristics of vanadium (V) on silica. Water, Air, and Soil Pollution 231(1):10. https://doi.org/10.1007/s11270-019-4377-5

García-Jiménez A, Trejo-Téllez LI, Guillén-Sánchez D, Gómez-Merino FC (2018). Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS One 13(8):e0201908. https://doi.org/10.1371/journal.pone.0201908

Gómez-Merino FC, Trejo-Téllez LI (2018). The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In: Vats S (Ed). Biotic and Abiotic Stress Tolerance in Plants. Springer, Singapore, pp 137-172. https://doi.org/10.1007/978-981-10-9029-5_6

Grzanka M, Smolen M, Kováčik P (2020). Effect of vanadium on the uptake and distribution of organic and inorganic forms of iodine in sweetcorn plants during early-stage development. Agronomy 10(11):1666. https://doi.org/10.3390/agronomy10111666

Hu Y, Lee CC, Ribbe MW (2012). Vanadium nitrogenase: A two-hit wonder? Dalton Transactions 41(4):1118-1127. https://doi.org/10.1039/c1dt11535a

Imtiaz M, Ashraf M, Rizwan MS, Nawaz MA, Rizwan M, Mehmood S, …Tu S (2018). Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems. Ecotoxicology and Environmental Safety 158:139-144. https://doi.org/10.1016/j.ecoenv.2018.04.022

Imtiaz M, Rizwan MS, Mushtaq MA, Yousaf B, Ashraf M, Ali M, Tu S (2017). Interactive effects of vanadium and phosphorus on their uptake, growth and heat shock proteins in chickpea genotypes under hydroponic conditions. Environmental and Experimental Botany 134:72-81. https://doi.org/10.1016/j.envexpbot.2016.11.003

Jalal A, de Oliveira Junior JC, Ribeiro JS, Fernandes GC, Mariano GG, Trindade BDR, dos Reis AR (2021). Hormesis in plants: Physiological and biochemical responses. Ecotoxicology and Environmental Safety 207:111225. https://doi.org/10.1016/j.ecoenv.2020.111225

Kaur S, Kaur N, Siddique KHM, Nayyar H (2016). Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Archives of Agronomy and Soil Science 62(7):905-920. https://doi.org/10.1080/03650340.2015.1101070

Labuschagne M, Wepener V, Nachev M, Zimmermann S, Sures B, Smit NJ (2020). The application of artificial mussels in conjunction with transplanted bivalves to assess elemental exposure in a platinum mining area. Water 12(1):32. https://doi.org/10.3390/w12010032

Lin CW, Lin CY, Chang CC, Lee RH, Tsai TM, Chen PY, Chi WC, Huang HJ (2009). Early signalling pathways in rice roots under vanadate stress. Plant Physiology and Biochemistry 47(5):369-376. https://doi.org/10.1016/j.plaphy.2009.01.005

Lin CY, Huang IY, Chi WC, Huang TL, Kakimoto T, Tsai CR, Huang HJ (2015). Pathways involved in vanadate-induced root hair formation in Arabidopsis. Physiologia Plantarum 153(1):137-148. https://doi.org/10.1111/ppl.12229

Lin CY, Trinh NN, Lin CW, Huang HJ (2013). Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots. Plant Physiology and Biochemistry 66:98-104. https://doi.org/10.1016/j.plaphy.2013.02.007

Magar AS, Misra P, Latke MB, Shukla PK, Ramteke PW (2018) Effect of different doses of vanadium on yield attributing characters of sweet corn (Zea mays L.). International Journal of Current Microbiology and Applied Sciences 7(8):3097-3101. https://doi.org/10.20546/ijcmas.2018.708.330

McLauchlan CC, Murakami HA, Wallace CA, Crans DC (2018). Coordination environment changes of the vanadium in vanadium-dependent haloperoxidase enzymes. Journal of Inorganic Biochemistry 186:267-279. https://doi.org/10.1016/j.jinorgbio.2018.06.011

Mehrian SK, Heidari R, Rahmani F, Najafi S (2016). Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum Mill (tomato) plants. Journal of Cluster Science 27(1):327-340. https://doi.org/10.1007/s10876-015-0932-4

Meisch HU, Becker LJM (1981). Vanadium in photosynthesis of Chlorella fusca and higher plants. BBA - Bioenergetics 636(1):119-125. https://doi.org/10.1016/0005-2728(81)90083-9

Moore S, Stein WHA (1954). A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. Journal of Biological Chemistry 211:907-913. https://doi.org/10.1016/S0021-9258(18)71178-2

Moreno-Alvarado M, García-Morales S, Trejo-Téllez LI, Hidalgo-Contreras JV, Gómez-Merino FC (2017). Aluminum enhances growth and sugar concentration, alters macronutrient status and regulates the expression of NAC transcription factors in rice. Frontiers in Plant Science 8:73. https://doi.org/10.3389/fpls.2017.00073

Nawaz MA, Jiao Y, Chen C, Shireen F, Zheng Z, Imtiaz M, Bie Z, Huang Y (2018). Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. Journal of Plant Physiology 220:115-127. https://doi.org/10.1016/j.jplph.2017.11.003

Ohto MA, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001). Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiology 127(1):252-261. https://doi.org/10.1104/pp.127.1.252

Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology 12(3):267-274. https://doi.org/10.1016/j.pbi.2009.04.009

Poschenrieder C, Tolrà R, Barceló J (2006). Can metals defend plants against biotic stress? Trends in Plant Science 11(6):288-295. https://doi.org/10.1016/j.tplants.2006.04.007

Quinet M, Angosto T, Yuste-Lisbona F, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S (2019). Tomato fruit development and metabolism. Frontiers in Plant Science 10:1554. https://doi.org/10. 3389/fpls.2019.01554

Ranal MA, Garcia de Santana D (2006.) How and why to measure the germination process? Revista Brasileira de Botanica 29(1):1-11. https://doi.org/10.1590/S0100-84042006000100002

Rehder D (2013). Vanadium. Its role for humans. Metal Ions in Life Sciences 13:139-169. https://doi.org/10.1007/978-94-007-7500-8_5

Rehder D (2016). Perspectives for vanadium in health issues. Future Medicinal Chemistry 8(3):325–338. https://doi.org/10.4155/fmc.15.187

Roberts GK, Stout MD, Sayers B, Fallacara DM, Hejtmancik MR, Waidyanatha S, Hooth MJ (2016). 14-day toxicity studies of tetravalent and pentavalent vanadium compounds in Harlan Sprague Dawley rats and B6C3F1/N mice via drinking water exposure. Toxicology Reports 3:531-538. https://doi.org/10.1016/j.toxrep.2016.05.001

Roychoudhury A (2020). Vanadium uptake and toxicity in plants. SF Journal of Agricultural and Crop Management 1 (2):1010.

Saco DS, Martín S, San José P (2013). Vanadium distribution in roots and leaves of Phaseolus vulgaris: morphological and ultrastructural effects. Biologia Plantarum 57(1):128-132. https://doi.org/10.1007/s10535-012-0133-z

Saldaña-Sánchez WD, León-Morales JM, López-Bibiano Y, Hernández-Hernández M, Langarica-Velázquez EC, García-Morales S (2019). Effect of V, Se, and Ce on growth, photosynthetic pigments, and total phenol content of tomato and pepper seedlings. Journal of Soil Science and Plant Nutrition 19(3):678-688. https://doi.org/10.1007/s42729-019-00068-1

Schlesinger WH, Klein EM, Vengosh A (2017). Global biogeochemical cycle of vanadium. Proceedings of the National Academy of Sciences of the United States of America 114(52):E11092-E11100. https://doi.org/10.1073/pnas.1715500114

Ścibior A, Pietrzyk Ł, Plewa Z, Skiba A (2020). Vanadium: risks and possible benefits in the light of a comprehensive overview of its pharmacotoxicological mechanisms and multi-applications with a summary of further research trends. Journal of Trace Elements in Medicine and Biology 61:126508. https://doi.org/10.1016/j.jtemb.2020.126508

Sentíes-Herrera HE, Trejo-Téllez LI, Volke-Haller VH, Cadena-Íñiguez J, Sánchez-García P, Gómez-Merino FC (2018). Iodine, silicon, and vanadium differentially affect growth, flowering, and quality components of stalks in sugarcane. Sugar Tech 20(5):518-533. https://doi.org/10.1007/s12355-017-0572-0

Shaheen SM, Rinklebe J, Frohne T, White JR, DeLaune RD (2014). Biogeochemical factors governing cobalt, nickel, selenium, and vanadium dynamics in periodically flooded Egyptian North Nile Delta rice soils. Soil Science Society of America Journal 78(3):1065-1078. https://doi.org/10.2136/sssaj2013.10.0441

Singh B, Wort DJ (1969). Effect of vanadium on growth, chemical composition, and metabolic processes of mature sugar beet (Beta vulgaris L.) plants. Plant Physiology 44(9):1321-1327. https://doi.org/10.1104/pp.44.9.1321

Sippel D, Einsle O (2017). The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nature Chemical Biology 13(9):956-960. https://doi.org/10.1038/nchembio.2428

Steiner AA (1984). The universal nutrient solution. In: Sixth International Congress on Soilless Culture. ISOSC, Wageningen, pp 633-650.

Tian LY, Yang JY, Huang JH (2015). Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.). Environmental Science and Pollution Research 22(12):9215-9223. https://doi.org/10.1007/s11356-014-4031-0

Umunnakwe-Johnboscoe E, Ogamba-Adindu E (2013). Bioaccumulation of heavy metals in crabs at Bundu-Ama community, Port Harcourt. Journal of Environment and Earth Science 3(14):11-21.

Venkataraman BV, Sudha S (2005). Vanadium toxicity. Asian Journal of Experimental Sciences 19(2):127-134.

Wehrli B, Stumm W (1989). Vanadyl in natural waters: Adsorption and hydrolysis promote oxygenation. Geochimica et Cosmochimica Acta 53(1):69-77. https://doi.org/10.1016/0016-7037(89)90273-1

Wu Z, Zhang Y, Yang J, Zhou Y, Wang C. (2020). Effect of vanadium on testa, seed germination, and subsequent seedling growth of alfalfa (Medicago sativa L.). Journal of Plant Growth Regulation 40(29):1566-1578. https://doi.org/10.1007/s00344-020-10206-0

Xie M, Chen D, Zhang F, Willsky GR, Crans DC, Ding W (2014). Effects of vanadium (III, IV, V)-chlorodipicolinate on glycolysis and antioxidant status in the liver of STZ-induced diabetic rats. Journal of Inorganic Biochemistry 136:47-56. https://doi.org/10.1016/j.jinorgbio.2014.03.011

Yang J, Wang M, Jia Y, Gou M, Zeyer J (2017). Toxicity of vanadium in soil on soybean at different growth stages. Environmental Pollution 231:48-58. https://doi.org/10.1016/j.envpol.2017.07.075

Yuan Y, Imtiaz M, Rizwan M, Dong X, Tu S (2020). Effect of vanadium on germination, growth and activities of amylase and antioxidant enzymes in genotypes of rice. International Journal of Environmental Science and Technology 17(1):383-394. https://doi.org/10.1007/s13762-019-02451-y

Downloads

Published

2021-11-02

How to Cite

GARCÍA-JIMÉNEZ, A. ., TREJO-TÉLLEZ, L. I. ., PERALTA SÁNCHEZ, M. G. ., CONTRERAS-OLIVA, A. ., & GÓMEZ-MERINO, F. C. (2021). Vanadium stimulates growth and flower production in tomato without affecting seed germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 12400. https://doi.org/10.15835/nbha49412400

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha49412400

Most read articles by the same author(s)