Effect of climate change on the spatial distribution and cork production of Quercus suber L., the risk of exclusion by the Aleppo pine expansion, and management practices to protect Q. suber habitat: A review


  • Kaouther MECHERGUI University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests, B.P. 10, Hédi Karray Street, Menzeh IV, Ariana 2080 (TN)
  • Wahbi JAOUADI University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests, B.P. 10, Hédi Karray Street, Menzeh IV, Ariana 2080; University of Jendouba, Silvo-Pastoral Institute of Tabarka, B.P. 328, 8110 Tabarka (TN)
  • Amal S. ALTAMIMI Princess Norah Bint Abdulrahman University, Biology Department, College of Science Riyadh (SA)
  • Souheila NAGHMOUCHI University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests, B.P. 10, Hédi Karray Street, Menzeh IV, Ariana 2080 (TN)
  • Youssef AMMARI University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests, B.P. 10, Hédi Karray Street, Menzeh IV, Ariana 2080 (TN)




Aleppo pine; climate change; cork oak; cork production; expansion; management practices; potential distribution


Climate change represents an important challenge for forest management and the silviculture of stands and it is known that climate change will have complex effects on cork oak forest ecosystems. North Africa and the Mediterranean basin are especially vulnerable to climate change. Under the effect of climate change, cork oak will disappear from a large area in the future, and the rest will migrate to higher altitudes and latitudes. This study aimed to evaluate the effect of climate change on the spatial distribution of Quercus suber L. and cork production in the Mediterranean area, and the risk of its exclusion by the Aleppo pine (Pinus halepensis Mill.) expansion. The literature review showed that up to 40% of current environmentally suitable areas for cork oak may be lost by 2070, mainly in northern Africa and the southern Iberian Peninsula. Temperature directly influences atmospheric evaporative demand and should affect cork productivity. Precipitation is the main factor that positively influences cork growth and several authors have confirmed the negative effect of drought on this growth. Currently, cork oak habitats are colonized in several places mainly by the Aleppo pine. Under climate change, Aleppo pine is projected to occupy higher altitude sites and several authors have predicted that current and future global warming will have a positive influence on Aleppo pine growth in wet sites. In the future and under climate change, there is a strong possibility that the Aleppo pine will colonize cork oak habitat. Finally, we proposed management practices to protect cork oak against climate change and Aleppo pine expansion.


Acácio V, Dias FS, Catry FX, Rocha M, Moreira F (2016). Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Global Change Biology 23(3):1199-1217. https://doi.org/10.1111/gcb.13487

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1(1):95-111.


Alberto FJ, Aitken SN, Alia R, Gonzalez-Martinez SC, Hanninen H, Kremer A, … Savolainen O (2013). Potential for evolutionary responses to climate change evidence from tree populations. Global Change Biology 19(6):1645-1661. https://doi.org/10.1111/Gcb.12181

Aloui A, Ajaibi A, Benhamadi N (2006). Etude de la qualité du liège de reproduction des suberaies d’Ain Draham [Study of the quality of reproduction cork of Ain Draham cork oak stands]. Actes du séminaire, Gestion intégrée des forêts de chêne liège et de pin d’Alep. Annales de l’INRGREF 9(1):44-59.

Aranda I, Castro L, Alía R, Pardos JA, Gil L (2005). Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiology 25(8):1085-1090. https://doi.org/10.1093/treephys/25.8.1085

Aranda I, Pardos M, Puértolas J, Jiménez MD, Pardos JA (2007). Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. Tree Physiology 27(5):671-677. https://doi.org/10.1093/treephys/27.5.671

Araujo MB, Williams PH (2000). Selecting areas for species persistence using occurrence data. Biological Conservation 96(3):331-345. https://doi.org/10.1016/S0006-3207(00)00074-4

Athanasiadis N, Gerasimidis A (1986). Strofylia ecosystem of NW Peleoponisos and the phytosociological units, Thessaloniki. (in Greek).

Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary province. Annals of the Missouri Botanical Garden 70(4):629-657. https://doi.org/10.2307/2398982

Barbero M, Loisel R, Quézel P, Richardson DM, Romane F (1998). Pines of the Mediterranean basin. In: Richardson DM (Ed). Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, pp 153-170.

Becker A, Bugmann H (2001). Global change and mountain regions (No. 0284-8015). IGBP, Stockholm.

Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008). Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science 11(2):169-178. https://doi.org/10.3170/2008-7-18348

Bertrand R, Perez V, Gegout JC (2012). Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Global Change Biology 18(8):2648-2660. https://doi.org/10.1111/j.1365-2486.2012.02679.x

Besson CK, Lobo-do-Vale R, Rodrigues ML, Almeida P, Herd A, Grant OM, … Pereira JS (2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology 184:230-242. https://doi.org/10.1016/j.agrformet.2013.10.004

Brunetti M, Maugeri M, Nanni T, Navarra A (2002). Droughts and extreme events in regional daily Italian precipitation series. International Journal of Climatology 22(5):543-558. https://doi.org/10.1002/joc.751

Buckley YM, Rees M, Paynter Q, Lonsdale WM (2004). Modelling integrated weed management of an invasive shrub in tropical Australia. Journal of Applied Ecology 41(3):547-560. https://doi.org/10.1111/j.0021-8901.2004.00909.x

Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment 9(5):278-286. https://doi.org/10.1890/100084

Bussotti F, Pollastrini M, Holland V, Brüggemann W (2015). Functional traits and adaptive capacity of European forests to climate change. Environmental and Experimental Botany 111:91-113. https://doi.org/10.1016/j.envexpbot.2014.11.006

Cabezudo Artero B, Perez Latorre AV (2004). Las comunidades vegetales. [Plant communities] In: Herrera CM (Ed). El monte mediterraneo en Andalucıa. Consejerıa de Medio Ambiente, Junta de Andalucıa, Sevilla, pp 29-45.

Cañellas I, Roig S, Montero G (2005). Pruning influence on acorn yield in cork-oak open woodland. International congress on silvopastoralism and sustainable management: silvopastoralism and sustainable land management. CABI Publishing, Lugo, pp 110-111. https://doi.org/10.1079/9781845930011.0110

Cañellas I, Roig S, Poblaciones MJ, Gea-Izquierdo G, Olea L (2007). An approach to acorn production in Iberian dehesas. Agroforestry Systems 70(1):3-9. https://doi.org/10.1007/s10457-007-9034-0

Caritat A, Gutiérrez E, Molinas M (2000). Influence of weather on cork-ring width. Tree Physiology 20(13):893-900. https://doi.org/10.1093/treephys/20.13.893

Caritat A, Molinas M, Gutiérrez E (1996). Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, southwestern Spain). Forest Ecology and Management 86(1-3):113-20. https://doi.org/10.1016/S0378-1127(96)03787-5

Chorana H, Dehane B, Beltrán RS (2019). Characterisation of the cork growth and quality of cork oak woodlands, North-West Algeria. International Journal of Environmental Studies 1-16. https://doi.org/10.1080/00207233.2019.1594290

Ciancio O, Cutini A, Mercurio R, Veracini A (1986). Sulla struttura della pineta di pino domestico di Alberese. [On the structure of the pine forest of Alberese]. Annali dell’ Istituto Sperimentale della Selvicoltura, Arezzo XVII:171-236.

CORKASSESS (2001). Field Assessment and modelling of cork production and quality. Final Report. Contract FAIR.C97.1438, (Brussels: European Commission Research Directorate General. Life Sciences Agriculture Agro-Industry; Fisheries and Forestry).

Correia RA, Bugalho MA, Franco AMA, Palmeirim JM (2017). Contribution of spatially explicit models to climate change adaptation and mitigation plans for a priority forest habitat. Mitigation and Adaptation Strategies for Global Change 23(3):371-386. https://doi.org/10.1007/s11027-017-9738-z

Costa A, Barbosa I, Roussado C, Graça J, Spiecker H (2016). Climate response of cork growth in the Mediterranean oak (Quercus suber L.) woodlands of southwestern Portugal. Dendrochronologia 38:72-81. http://dx.doi.org/10.1016/j.dendro.2016.03.007

Costa A, Madeira M, Santos JL, Plieninger T (2014). Recent dynamics of Mediterranean evergreen oak wood pastures in Southwestern Iberia (Portugal, Spain). In: Hartel T, Plieninger T (Eds). European wood pastures in transition: a social-ecological approach. Earthscan from Routledge. Publisher, Routledge Earthscan, New York, pp 70-89.

Costa A, Nunes LC, Graça J, Spiecker H, Graça J (2015). Insights into the responsiveness of cork oak (Quercus suber L.) to bark harvesting. Economic Botany 69(2):171-84. https://doi.org/10.1007/s12231-015-9305-z

Costa A, Pereira H, Oliveira A (2001). A dendroclimatological approach to diameter growth in adult cork-oak trees under production. Trees 15(7):438-443. https://doi.org/10.1007/s004680100119

Costa A, Pereira H, Oliveira A (2002). Influence of climate on the seasonality of radial growth of cork oak during a cork production cycle. Annals of Forest Science 59(4):429-437. https://doi.org/10.1051/forest:2002017

Costa A, Pereira H, Oliveira A (2003). Variability of radial growth in cork-oak adult trees under cork production. Forest Ecology and Management 175(1-3):239-246. https://doi.org/10.1016/S0378-1127(02)00145-7

Costa GC, Nogueira C, Machado RB, Colli GR (2010). Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodiversity and Conservervation 19(3):883-899. https://doi.org/10.1007/s10531-009-9746-8

Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (2005). Los Bosques Ibéricos. Una interpretacion geobotanica. Edito-rial Planeta, Barcelona.

Crispo E (2008). Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. Journal of Evolutionary Biology 21(6):1460-1469. https://doi.org/10.1111/j.1420-9101.2008.01592.x

Dale VH, Joyce LA, Mcnulty S, Neilson RP, Ayres MP, Flannigan MD, … Michael Wotton B (2001). Climate change and forest disturbances. BioScience 51(9) :723-734.


David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, … David JS (2007). Water-use strategies in two co-occuring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiology 27(6):793-803. https://doi.org/10.1093/treephys/27.6.793

David TS, Pinto CA, Nadezhdina N, Kurz-Besson C, Henriques MO, Quilhó T, … David JS (2013). Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: a modeling approach based on root sap flow. Forest Ecology and Management 307:136-146. https://doi.org/10.1016/j.foreco.2013.07.012

de Villalobos A.E, Schwerdt L (2020). Seasonality of feral horse grazing and invasion of Pinus halepensis in grasslands of the Austral Pampean Mountains (Argentina): management considerations. Biological Invasions 22:2941-2955. https://doi.org/10.1007/s10530-020-02300-x

de Villalobos AE, Zalba SM, Peláez DV (2011). Pinus halepensis invasion in mountain pampean grassland: effects of feral horses grazing on seedling establishment. Environmental Research 111(7):953-959.


Deal RL, Smith N, Gates J (2017). Ecosystem services to enhance sustainable forest management in the US: moving from forest service national programmes to local projects in the Pacific Northwest. Forestry an International Journal of Forest Research 90(5):632-639. https://doi. org/10.1093/forestry/cpx025

Dehane B (2012). Incidences de l’état sanitaire des arbres du chêne-liége sur les accroissements annuels et la qualité du liège de deux suberaies oranaises : M’Sila (W Oran) et Zari-effet (W. Tlemcen). [Effects of the health status of cork oak trees on the annual growth and quality of the cork in two Oran cork groves: M’Sila (W Oran) and Zari-effect (W. Tlemcen)]. Ph.D. dissertation, University of Tlemcen, Algeria.

Dehane B, Ghefar M (2017). Etude de la variabilité de croissance du liège dans le Nord Algérien [Study of the variability of growth of the cork in Northern Algeria]. Revue Internationale de Géologie, de Géographie et d’Ecologie Tropicales 41:39-54.

Dehane BRT, Bouhraoua R, Ceca JLGD, González-Adrados JR (2013). Short communication. Effect of the health status on the cork production characteristics of Western Algeria cork oak stands. Forest Systems 22(1):138-146. http://dx.doi.org/10.5424/fs/2013221-02866

Delzon S, Urli M, Samalens JC, Lamy JB, Lischke H, Sin F, … Porté AJ (2013). Field evidence of colonisation by Holm Oak, at the Northern Margin of its distribution range, during the anthropocene Period. PLoS One 8(11) :1-8. http://dx.doi.org/10.1371/journal.pone.0080443

Diáz M, Campos P, Pulido FJ (1997). The Spanish dehesas : a diversity in land-use and wildlife. In: Pain DJ, Pienkowski MW (Eds). Farming and birds in Europe. Academic Press, Cambridge, UK.

Didham RK, Tylianakis JM, Hutchinson MA, Ewers RM, Gemmell NJ (2005). Are invasive species the drivers of ecological change? Trends in Ecology and Evolution 20(9):470-474. https://dx.doi.org/10.1016/j.tree.2005.07.006

Dobrowski SZ (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17(2):1022-1035. https://doi.org/10.1111/j.1365-2486.2010.02263.x

Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology 24(3):1150-1163. https://dx.doi.org/10.1111/gcb.13925

FAO (2013). State of Mediterranean forests. Rome. Retrieved from http://www.fao.org/docrep/017/i3226e/i3226e.pdf

Ferreira A, Lopes F, Periera H (2000). Caractérisation de la croissance et la qualité du liège dans une région de production [Characterization of growth and quality of cork in one region of production]. Annals of Forest Sciences 57(2):187-193. https://dx.doi.org/10.1051/forest:2000169

Fons-Esteve J, Paramo F (2003). Mapping sensitivity to desertification (DISMED). European Environmental Agency, European Topic Center, Terrestrial Environment, Internal Report.

Fortes MA, Rosa ME, Pereira H (2004). A Cortiça. ISTPress, Lisbon.

Fréjaville T, Fady B, Kremer A, Ducousso A, Benito Garzón M (2019). Inferring phenotypic plasticity and population responses to climate across tree species ranges using forest inventory data. Global Ecology and Biogeography 28:1259-1271. https://dx.doi.org/10.1111 /geb.12930

Gandour M, Khouja ML, Toumi L, Triki S (2007). Morphological evaluation of cork oak (Quercus suber): mediterranean provenance variability in Tunisia. Annals of Forest Science 64(5):549-555. https://dx.doi.org/10.1051/forest:2007032

Garah K, Bentouati A (2019). Using the MaxEnt model for assessing the impact of climate change on the Aurasian Aleppo pine distribution in Algeria. African Journal of Ecolgy 1-12. https://dx.doi.org/ 10.1111/aje.12630

Gentilesca T, Camarero JJ, Colangelo M, Nolè A, Ripullone F (2017). Drought-induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest 10(5) :796-806. https://dx.doi.org/10.3832/ifor2317-010

Gerber S, Chadœuf J, Gugerli F, Lascoux M, Buiteveld J, Cottrell J, … Kremer A (2014). High rates of gene flow by pollen and seed in oak populations across Europe. PLoS ONE 9(1):e85130. https://doi.org/10.1371/journal.pone.0085130

Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology 21(3):394-407. https://doi.org/10.1111/j.1365-2435.2007.01283.x

Ghalem A, Barbosa I, Bouhraoua R.T, Costa A (2018). Climate signal in cork-ring chronologies: case studies in Southwestern Portugal And Northwestern Algeria. Tree-Ring Research 74(1):15-27. http://dx.doi.org/10.3959/1536-1098-74.1.15

Gonzalez-Adrados JR, Gourlay I (1998). Applications of dendrochronology to Quercus suber L. In: Pereira H (Ed). Cork Oak and Cork. Proceedings of the European Conference on Cork Oak and Cork. Centro de Estudos Florestais, Lisboa, Portugal, pp 162-166.

Goubanova K, Li L (2007). Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change 57(1-2):27-42. http://dx.doi.org/10.1016/j.gloplacha.2006.11.012

Gourlay I, Pereira H (1998). The effect of bark stripping on wood production in cork oak (Quercus suber L.) and problems of growth ring definition. In: Pereira H (Ed). Cork Oak and Cork. Proceedings of the European Conference on Cork Oak and Cork. Centro de Estudos Florestais, Lisboa, Portugal, pp 99-107.

Govaerts R, Frodin DG (1998). World checklist and bibliography of Fagales. Royal Botanic Gardens, Kew, pp 408.

Gratani L, Catoni R, Varone L (2016). Evergreen species response to Mediterranean climate stress factors. iForest 9(6):946-953. https://doi.org/10.3832/ifor1848-009

Hidalgo PJ, Marin JM, Quijada J, Moreira JM (2008). A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: A suitable tool for reforestation. Forest Ecology and Management 255(1):25-34. https://doi.org/do/10.1016/j.foreco.2007.07.012

Higgins SI, Richardson DM (1998). Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecology 135(1):79-93. https://doi.org/10.1023/A:1009760512895

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.

Kelbel P, Adamčíková Z (2011). Selected invasive and expansive tree species in conditions of the botanical garden of P.J. Šafárik University in Košice. Thaiszia Journal of Botany 21:141-152. http://www.bz.upjs.sk/thaiszia

Klausmeyer KR, Shaw MR (2009). Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterranean ecosystems worldwide. PLoS ONE 4(7):1-9. https://doi.org/10.1371/Journal.Pone.0006392

Knapic S, Louzada JL, Leal S, Pereira H (2007). Radial variation of wood density components and ring width in cork oak trees. Annals of Forest Science 64(2):211-218. https://doi.org/10.1051/forest:2006105

Kremer A, Potts BM, Delzon S (2014). Genetic divergence in forest trees : understanding the consequences of climate change. Functional Ecology 28(1):22-36. https://doi.org/ 10.1111/1365-2435.12169

Langdon B, Pauchard A, Aguayo M (2010). Pinus contorta invasion in the Chilean Patagonia local patterns in a global context. Biology Invasions 12(12):3961-3971. https://doi.org/10.1007/s10530-010-9817-5

Lauw A, Oliveira V, Lopes F, Pereira H (2018). Variation of cork quality for wine stoppers across the production regions in Portugal. European Journal of Wood and Wood Products 76(1):123-132.


Lavi A, Perevolotsky A, Kigel J, Noy-Meir I (2005). Invasion of Pinus halepensis from plantations into adjacent natural habitats. Applied Vegetation Science 8(1):85-92. https://doi.org/10.1111/j.1654-109X.2005.tb00632.x

Le Maitre DC, van Wilgen BW, Gelderblom CM, Bailey C, Chapman RA, Nel JA (2002). Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management. Forest Ecology and Management 160(1-3) :143-159. https://doi.org/10.1016/S0378-1127(01)00474-1

Leal S, Nunes E, Pereira H (2008). Cork oak (Quercus suber L.) wood growth and vessel characteristics variations in relation to climate and cork harvesting. European Journal of Forest Research 127(1):33-41. https://doi.org/10.1007/s10342-007-0180-8

Leal S, Sousa VB, Pereira H (2006). Within and between-tree variation in the biometry of wood rays and fibres in cork oak (Quercus suber L.). Wood Science and Technology 40(7):585-597.


Ledgard N (1988). The spread of introduced trees in New Zealand’s rangelands - South Island high country experience. Review-Tussock Grassland and Mountain Lands Institute 44:1-8

Ledgard NJ (2009). Wilding control guidelines for farmers and land managers. New Zealand Plant Protection 62:380-386. https://doi.org/10.30843/nzpp.2009.62.4879

Leite C, Oliveira V, Lauw A, Pereira H (2019). Cork rings suggest how to manage Quercus suber to mitigate the effects of climate changes. Agricultural and Forest Meteorology 266-267:12-19. https://doi.org/10.1016/j.agrformet.2018.11.032

Lemes P, Melo AS, Loyola RD (2014). Climate change threatens protected areas of the Atlantic Forest. Biodiversity and Conservation 23(2):357-368. https://doi.org/10.1007/s10531-013-0605-2

Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768-1771. https://doi.org/10.1126/science.1156831

Lopez Gonzalez GA (2007). Guıa de los arboles y arbustos de la Penınsula Iberica y Baleares, 3rd edn. Ediciones Mundi-Prensa, Madrid.

Lopez-Tirado J, Hidalgo PJ (2016a). Predictive modelling of climax oak trees in southern Spain: insights in a scenario of global change. Plant Ecology 217(4) :451-463. https://doi.org/10.1007/s11258-016-0589-6

Lopez-Tirado J, Hidalgo PJ (2016b). Ecological niche modelling of three Mediterranean pine species in the south of Spain: a tool for afforestation/reforestation programs in the twenty-first century. New Forests 47(3):411-429. https://doi.org/10.1007/s11056-015-9523-3

Lopez Tirado J, Vessella F, Schirone B, Hidalgo PJ (2018). Trends in evergreen oak suitability from assembled species distribution models: assessing climate change in south western Europe. New Forests (2018) 49(4):471-487. https://doi.org/10.1007/s11056-018-9629-5

Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz F (2000). Biotic invasions: causes, epidemiology, global consequences and control. Ecological Applications 10(3):689-710. https://doi.org/do/10.2307/2641039

Manso R, Pukkala T, Pardos M, Miina J, Calama R (2014). Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Canadian Journal of Forest Research 44(3):250-262. https://doi.org/10.1139/cjfr-2013-0179

Mendes MP, Ribeiro L, David TS, Costa A (2016). How dependent are cork oak (Quercus suber L.) woodlands on groundwater? A case study in southwestern Portugal. Forest Ecology and Management 378:122-130. https://doi.org/10.1016/j.foreco.2016.07.024

Menitsky YL (2005). Oaks of Asia. Science Publishers, Enfield.

Moretti V, Di Bartolomei R, Sorgi T, Aromolo R, Salvati L (2015). Soil water deficit and climate conditions during the dry season along the coastal-inland gradient in Castelporziano forest, central Italy. Rendiconti Lincei Scienze Fi-siche e Naturali 26:283-288. https://doi.org/10.1007/s12210-014-0336-7

Munzbergova Z, Hadincova V, Wild J, Herben T, Maresova J (2010). Spatial and temporal variation in dispersal pattern of an invasive pine. Biological Invasions 12(8):2471-2486. https://doi.org/10.1007/s10530-009-9656-4

Nathan R, Ne'eman G (2004). Spatiotemporal dynamics of recruitment in Aleppo pine (Pinus halepensis Miller). Plant Ecology 171(1-2) :123-137. https://doi.org/10.1023/b:vege.0000029379.32705.0f

Nathan R, Safriel UN, Noy-Meir I, Schiller G (1999). Seed release without fire in Pinus halepensis, a Mediterranean serotinous wind-dispersed tree. Journal of Ecology 87(4):659-669.


Natividade JV (1950). Subericultura. Direcção-Geral dos Serviços Florestais e Aquícolas.

Nixon KC (2006). Global and neotropical distribution and diversity of oak (genus Quercus) and oak forests. In: Kappelle M (Ed). Ecology and conservation of neotropical Montane oak forests. Ecological studies series, vol 185. Springer-Verlag, Berlin, pp 3-13.

Nunes E (1996). Estudo da influência da precipitação e temperatura no crescimento juvenil de Quercus suber L. a través dos anéis anuais de crescimento. [Study of the influence of precipitation and temperature on juvenile growth of Quercus suber L. through annual growth rings]. Dissertation, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Lisboa, Portugal.

Nunez M.A, Chiuffo M.C, Torres A, Paul T, Dimarco R.D, Raal P, … Richardson DM (2017). Ecology and management of invasive Pinaceae around the world: progress and challenges. Biological Invasions 19(11):3099-3120. https://doi.org/10.1007/s10530-017-1483-4

Oliveira G, Correia O, Martins-Loução MA, Catarino FM (1994). Phenological and growth patterns of the Mediterranean oak Quercus suber L. Trees 9(1):41-46. https://doi.org/10.1007/BF00197868

Oliveira G, Costa A (2012). How resilient is Quercus suber L. to cork harvesting? A review and identification of knowledge gaps. Forest Ecology and Management 270:257-272. https://doi.org/10.1016/j.foreco.2012.01.025

Oliveira V, Lauw A, Pereira H (2016). Sensitivity of cork growth to drought events: insights from a 24-year chronology. Climate Change 137(1-2):261-274. https://doi.org/10.1007/s10584-016-1680-7

Parmesan C (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637-669. http://www.jstor.org/stable/30033846

Parmesan C, Yohe G (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37-42. https://doi.org/do/10.1038/nature01286

Pecchi M, Marchi M, Moriondo M, Forzieri G, Ammoniaci M, Bernetti I, … Chirici G (2020). Potential impact of climate change on the forest coverage and the spatial distribution of 19 key forest tree species in Italy under RCP4.5 IPCC trajectory for 2050s. Forests 11:934-952. https://doi.org/10.3390/f11090934

Peñuelas J, Boada M (2003). A global change-induced biome shift in the Montseny mountains (NE Spain). Global Change Biology 9(2) :131-140. https://doi.org/10.1046/j.1365-2486.2003.00566.x

Pereira H (2007). Cork: biology, production and uses. Elsevier, Amsterdam.

Pereira H (2015). The rationale behind cork properties: a review of structure and chemistry. Bioresources 10(3):6207-6229. https://doi.org/10.15376/biores.10.3.Pereira

Peterken GF (2001) Ecological effects of introduced tree spe-cies in Britain. Forest Ecology and Management 141(1-2):31-42. https://doi.org/10.1016/S0378-1127(00)00487-4

Plieninger T, van der Horst D, Schleyer C, Bieling C (2014). Sustaining ecosystem services in cultural landscapes. Ecology and Society 19(2):59-64. https://doi.org/10.5751/ES-06159-190259

Pons J, Pausas JG (2006). Oak regeneration in heterogeneous landscape: the case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecology and Management 231(1-3):196-204. https://doi.org/10.1016/j.foreco.2006.05.049

Prach K, Wade PM (1992). Population characteristics of expansive perennial herbs. Preslia 64:45-51.

Pyšek P, Richardson DM, Rejmánek M, Webster G, Williamson M, Kirschner J (2004). Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. Taxon 53(1):131-143. https://doi.org/10.2307/4135498

Rambal S, Ourcival JM, Joffre R, Mouillot F, Nouvellon Y, … Rocheteau A (2003). Drought controls over conductance and assimilation of a Mediterranean evergreen ecosystem: Scaling from leaf to canopy. Global Change Biology 9(12):1813-1824. https://doi.org/10.1111/j.1365-2486.2003.00687.x

Ramırez-Valiente JA, Sanchez-Gomez D, Aranda I, Valladares F (2010). Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiology 30(5):618-627. https://doi.org/10.1093/treephys/tpq013

Ramırez-Valiente JA, Valladares F, Huertas AD, Granados S, Aranda I (2011). Factors affecting cork oak growth under dry conditions: local adaptation and contrasting additive genetic variance within populations. Tree Genetics and Genomes 7(2):285-295. https://doi.org/10.1007/s11295-010-0331-9

Richardson DM (2001). Plant invasions. In: Levin S (Ed). Encyclopedia of Biodiversity. Academic Press, San Diego, pp 677-688.

Richardson DM, Higgins SI (1998). Pines as invaders in the Southern Hemisphere. In: Richardson DM (Ed). Ecology and Biogeography of Pinus. Cambridge University Press, Cambridge, pp 450-473.

Richardson DM, Williams PA, Hobbs RJ (1994). Pine invasions in the Southern hemisphere: determinants of spread and invadability. Journal of Biogeography 21(5):511-527. https://doi.org/10.2307/2845655

Rodewald AD, Arcese P (2016). Direct and indirect interactions between landscape structure and invasive or oberabundant species. Current Landscape Ecology Reports 1(1):30-39.


Scheffers BR, Meester LD, Bridge TCL, Hoffmann AA, Pandolfi JM, Corlett RT, … Watson JEM (2016). The broad footprint of climate change from genes to biomes to people. Science 354(6313):719-729. https://dx.doi.org/10.1126/science.aaf7671

Schirone B, Spada F, Piovesan G, Simeone MC (2015). Phenorhythms and forest refugia. In: Box EO, Fujiwara K (Eds). Warm-temperate deciduous forests around the Northern Hemisphere. Springer, London, pp 213-223.

Simberloff D (2010). Invasive species. In Conservation biology for all, Sodhi NS, Ehrlich PR (Eds). Oxford University Press, New York pp 131-152.

Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, … Ziller SR (2010). Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Austral Ecology 35(5):489-504. https://doi.org/10.1111/j.1442-9993.2009.02058.x

Sousa VB, Leal S, Quilhó T, Pereira H (2009). Characterization of cork oak (Quercus suber) wood anatomy. Iawa Journal 30(2):149-161. https://doi.org/10.1163/22941932-90000210

Sun S, Zhang Y, Huang D, Wang H, Cao Q, Fan P, … Wang R (2020). The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Science of the Total Environment 744:140786-140797. https://doi.org/10.1016/j.scitotenv.2020.140786

Tapias R, Climent J, Pardos JA, Gil L (2004). Life histories of Mediterranean pines. Plant Ecology 171:53-68. https://doi.org/10.1023/B:VEGE.0000029383.72609.f0

Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araújo MB (2011). Consequences of climate change on the tree of life in Europe. Nature 470(7335) :531-534. https://dx.doi.org/10.1038/nature09705

Trumbore S, Brando P, Hartmann H (2015). Forest health and global change. Science 349(6250):814-818. https://doi.org/ 10.1126/science.aac6759

Van der Meersch V, Zo-Bi I C, Amani BHK, N’dja JK, N’Guessan AE, Herault B (2020). Causes and consequences of Cedrela odoratainvasion in West African semi-deciduous tropical forests. Biological Invasions. https://doi.org/10.1007/s10530-020-02381-8

Varela MC (2001). The EUFORGEN Quercus suber Network and the research projects for the evaluation of genetic variability of cork oak. In: Mediterranean Oaks Network, Report of the first meeting, 12-14 October 2000, Antalya, Turkey. International Plant Genetic Resources Institute, Rome, Italy, 2001. ISBN 92-9043-469-4 IPGRI Via dei Tre Denari, 472/a 00057 Mac-carese (Fiumicino) Rome, Italy International Plant Genetic Resources Institute, pp 6.

Vennetier M, Girard F, Didier C, Ouamim S, Ripert C, Misson L, … NDYAYE A (2011). Adaptation phénologique du pin d’Alep au changement climatique. [Phenological adaptation of Aleppo pine to climate change]. Forêt méditerranéenne T. XXXII (2):151-166.

Vennetier M, Vila B, Liang EY, Guibal F, Ripert C, Chandioux O (2005). Impact du changement climatique sur la productivité forestière et le déplacement d’une limite bioclimatique en région méditerranéenne française. [Impact of climate change on forest productivity and the displacement of a bioclimatic limit in the French Mediterranean region]. Ingénieries 44:49-61.

Vericat P, Pique M, Serrada R (2012). Gestion adaptativa al cambio global en masas de Quercus mediterraneos. [Adaptive management to global change in masses of Quercus mediterranean Quercus]. Centre Tecnologic Forestal de Catalunya, Lleida.

Vessella F, López-Tirado J, Simeone MC, Bartolomeo S, Hidalgo PJ (2017). A tree species range in the face of climate change: cork oak as a study case for the Mediterranean biome. European Journal of Forest Research 136:555-569. https://doi.org/10.1007/s10342-017-1055-2

Vessella F, Schirone B (2013). Predicting potential distribution of Quercus suber in Italy based on ecological niche models: Conservation insights and reforestation involvements. Forest Ecology and Management 304:150-161.https://dx.doi.org/10.1016/j.foreco.2013.05.006

Woziwoda B, Kopeć D, Witkowski J (2014). The negative impact of intentionally introduced Quercus rubra L. on a forest community. Acta Societatis Botanicorum Poloniae 83(1):39-49. https://doi.org/10.5586/asbp.2013.035

Zalba SM, Cuevas YA, Boó RM (2008). Invasion of Pinus halepensis Mill. following a wildfire in an Argentine grassland nature reserve. Journal of Environmental Management 88(3):539-546. https://doi.org/10.1016/j.jenvman.2007.03.018




How to Cite

MECHERGUI, K., JAOUADI, W., ALTAMIMI, A. S., NAGHMOUCHI, S., & AMMARI, Y. (2021). Effect of climate change on the spatial distribution and cork production of Quercus suber L., the risk of exclusion by the Aleppo pine expansion, and management practices to protect Q. suber habitat: A review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12218. https://doi.org/10.15835/nbha49112218



Review Articles
DOI: 10.15835/nbha49112218