Germination and growth of radish under influence of nipplewort aqueous extracts


  • Katarzyna MOŻDŻEŃ Pedagogical University of Krakow, Institute of Biology, Podchorążych 2 St., 30-084 Kraków (PL)
  • Beata BARABASZ-KRASNY Pedagogical University of Krakow, Institute of Biology, Podchorążych 2 St., 30-084 Kraków (PL)
  • Alina STACHURSKA-SWAKOŃ Jagiellonian University, Institute of Botany, Gronostajowa 3 St., 30-387 Kraków (PL)
  • Ingrid TURISOVÁ Matej Bel University, Faculty of Natural Sciences, Department of Biology and Ecology, Tajovského 40 St., 974 01 Banská Bystrica, (SK)
  • Peiman ZANDI Yibin University, International Faculty of Applied Technology, Yibin, Sichuan 644000 (CN)



allelopathy; germination; Lapsana communis subsp. communis; Raphanus sativus var. radicula; seeds; weeds


The conducted experiment was aimed at determining the effect of aqueous extracts from dry roots and shoots of common weed nipplewort (Lapsana communis L. subsp. communis) on seeds germination and early growth of radish (Raphanus sativus L. var. radicula Pers.), cultivars ‘Rowa’, ‘Krakowianka’, ‘Półdługa’. The experiment was carried out in the form of Petri dishes tests with 3 different percentage concentrations of extracts (1%, 3% and 5%, respectively). The germination indexes used here revealed that the germination capacity of the radish seeds was significantly inhibited by extracts from the roots and shoots of L. communis subsp. communis. The elongation growth of radish roots and hypocotyls was stimulated to a higher percentage by extracts from nipplewort roots than by extracts from shoots. The fresh and dry mass of the radish seedlings depended on the type (roots/shoots) and concentration of the extract as well as the radish cultivar. The electrolyte leakage was the highest in seedlings watered with 5% extract of nipplewort shoots. The cultivar most sensitive to nipplewort extracts turned out to be ‘Półdługa’, and the least sensitive was ‘Rowa’. The response of radish seeds to nipplewort extracts is probably due to the presence of allelochemical compounds and their synergistic interaction.


Abdul-baki BAA, Anderson JD (1973). Relationship between decarboxylation of glutamic acid and vigour in soybean seed. Crop Science 13:222-226.

Amini S, Azizi M, Joharchi MR, Moradinezhad F (2016). Evaluation of allelopathic activity of 68 medicinal and wild plant species of Iran by Sandwich method. International Journal of Horticultural Science and Technology 3:243-253.

AOSA (1983). Seed vigor hand testing book. Contribution No. 32 to the handbook on seed testing. Association of Official Seed Analysis. Springfield, IL. pp 122-128.

Ashrafi YZ, Sadeghi S, Mashhadi RH, Hassan AM (2008). Allelopathic effects of sunflower (Helianthus annuus) on germination and growth of wild barley (Hordeum spontaneum). Journal of Agricultural Technology 219-229.

Barralis G, Chadoeuf R, Lonchamp JP (1988). Longevité des semences de mauvais herbes annuelles dans un sol cultivé (Seed longevity of annual weeds in cultivated soil). Weed Research 28(6):407-418.

Berkefeld K (1988). Investigations about ecotype formation in Galium aparine L. (Rubiaceae) and Lapsana communis L. (Compositae). Flora (Jena) 181:111-130.

Biel-Parzymięso A (2020). Effect of Morus alba L. leaf extracts on seeds germination and the seedlings growth of Sinapis alba L. and Cucumis sativus L. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae 5:96-109.

Bond W, Davies G, Turner R (2007). The biology and non-chemical control of nipplewort (Lapsana communis L.). HDRA, Ryton Organic Gardens, Coventry, CV8, 3LG, UK.

Cheng F, Cheng Z (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science 6:1020.

Chou CH (1999). Roles of allelopathy in plant biodiversity and sustainable agriculture. Critical Reviews in Plant Sciences 18(5):609-636.

Duke SO, Dayan FE, Rimando AM, Schrader KK, Aliotta G, Oliva A (2002). Chemicals from nature for weed management. Weed Sciences 50:138-151.

Farooq M, Bajwa AA, Cheema SA, Cheema ZA (2013). Application of allelopathy in crop production. International; Journal of Agriculture and Biology 15:1367-1378.

Fontanel D, Galtier C, Debaouzy JC, Gueiffier A, Viel C (1999). Sesquiterpene lactone glycosides from Lapsana communis L. subsp. communis. Phytochemistry 51:999-1004.

Fontanel D, Galtier C, Viel C, Gueiffier A (1998a). Caffeoyl quinic and tartaric acids and flavonoids from Lapsana communis subsp. communis (Asteraceae). Zeitschrift für Naturforschung - Section C Journal of Biosciences 53:10901092.

Fontanel D, Kargol M, Gueiffier A, Viel C (1998b). Triterpene alcohols and fatty acids in lipids and nonsaponifiable matter of Lapsana communis L. subspecies communis (Asteraceae). Journal of the American Oil Chemists Society 75:1457-1459.

Francis A, Darbyshire SJ, Clements DR, DiTommaso A (2011). The biology of Canadian weeds. 146. Lapsana communis L. Canadian Journal of Plant Science 91:553-569.

Friedjung AY, Choudhary SP, Dudai N, Rachmilevitch (2013). Physiological conjunction of allelochemicals and desert plants. Plos One 8(12):e81580.

Fujii Y, Parvez SS, Parvez MM, Ohmae Y, Uda O (2003). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology Management 3:233-241.

Hulten E, Fries M (1986). Atlas of North European vascular plants. Part I-III, maps and commentaries. Koeltz Scientific Books, Konigstein, Germany.

Hussain MI, Reigosa MJ (2011). Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. Journal of Experimental Botany 62(13):4533-4545.

Islam AKMA, Anuar N, Yaakob Z (2009). Effect of genotypes and pre-sowing treatments on seed germination behavior of Jatropha. Asian Journal of Plant Sciences 8(6):433-439.

Islam AKMM, Khan MSI, Kato-Noguchi H (2013). Allelopathic activity of Litchi chinensis Sonn. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science 63(8):669-675. 09064710.2013.850531

Jabran K (2017). Allelopathy: Introduction and concepts. In: Manipulation of Allelopathic Crops for Weed Control. Springer Briefs in Plant Science. Springer, Cham.

Jabran K, Farooq M, Hussain M, Rehman H, Ali MA (2010) Wild oat (Avena fatua L.) and canary grass (Phalaris minor Ritz.) management through allelopathy. Journal of Plant Protection Research 50:41-44.

Jacob J, Sarada S (2012). Role of phenolics in allelopathic interactions. Allelopathy Journal 29(2):215-230.

Jarek S, Stachurska-Swakoń A (2016). The flora of the Tarnów area (Kotlina Sandomierska Basin). Fragmenta Floristica et Geobotanica Polonica 23(2):243-254.

Kashin AS, Berezutsky MA, Kochanova IS, Dobrynicheva NV, Poljanskaja MV (2007). Peculiarities of seed production in populations of Asteraceae species under impact of anthropogenic factors. Botanical Zhurnal 92:1408-1427.

Khan R, Azim Khan M, Waheedullah, Waqas M, Majid Khan A, Hussain Z, … Raza MA (2011). Allelopathic potential of Silybum marianum L. against the seed germination of edible legumes. Pakistan Journal Weed of Science Research 17(3):293-302.

Kong CH (2010). Ecological pest management and control by using allelopathic weeds (Ageratum conyzoides, Ambrosia trifida, and Lantana camara) and their allelochemicals in China. Weed Biology and Management 10:73-80.

Latif S, Chiapusio G, Weston LA (2017). Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research 82:19-54.

Li Z-H, Wang Q, Ruan X, Pan C-D, Jiang D-A (2010). Phenolics and plant allelopathy. Molecules 15(12):8933-8952.

Liebman, M, Staver CP (2001). Crop diversification for weed management. In: Liebman M, Mohler CL, Staver CP (Eds). Ecological Management of Agricultural Weeds. New York: Cambridge University Press, pp 322-374.

Lipniak K, Kliszcz A (2020). Allelopathic effect of goosefoot on germination and early stage growth of triticale and radish. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae 5:110-128.

Mahajan G, Sardana V, Chauhan BS (2015). Allelopathy for weed control in agricultural systems. Crop Protection 72:57-65.

Maqbool N, Wahid A, Farooq M, Cheema ZA, Siddique KHM (2013). Allelopathy and abiotic stress interaction in crop plants. In: Cheema Z, Farooq M, Wahid A (Eds). Allelopathy. Springer, Berlin, Heidelberg.

Matuszkiewicz W (2020). Przewodnik do oznaczania zbiorowisk roślinnych Polski (Guide to the determination of plant communities in Poland). Wydawnictwo Naukowe PWN, Warszawa.

Mazur A (2019). The role of seed coat in the germination and early stages of growth of bean (Phaseolus vulgaris L.) in the presence of chickweed (Stellaria media (L.) Vill.). Annales Universitatis Paedagogicae Cracoviensis Studia Naturae 4:103-118.

Milchunas DG, Vandever MW, Ball LO, Hyberg S (2011). Allelopathic cover crop prior to seeding is more important than subsequent grazing/mowing in grassland establishment. Rangeland Ecology and Management 64:291-300.

Możdżeń K, Barabasz-Krasny B, Stachurska-Swakoń A, Zandi P, Puła J, Wang Y, Turisová I (2020). Allelopathic interaction between two common meadow plants: Dactylis glomerata L. and Trifolium pratense L. Biologia 75:653-663.

Możdżeń K, Barabasz-Krasny B, Zandi P, Kliszcz A, Puła J (2020). Effect of aqueous extracts from Solidago canadensis L. leaves on germination and early growth stages of three cultivars of Raphanus sativus L. var. radicula Pers. Plants 9(11):1549.

Możdżeń K, Barabasz-Krasny B, Zandi P, Turisová I (2018). Influence of allelopathic activity of Galinsoga parviflora Cav. and Oxalis fontana Bunge on the early growth stages of cultivars Raphanus sativus L. var. radicula Pers. Biologia 73:1187-1195.

Możdżeń K, Rzepka A, (2016). Rola łupiny nasiennej podczas kiełkowania i wzrostu nasion bobu (Vicia faba L.) w obecności siarczanu ołowiu (The role of the seed coat on germination and growth of broad beans (Vicia faba L.) in lead sulfate conditions). Agronomy Science 71(4):55-65.

Mullan D, Pietragalla J (2012). Leaf relative water content. Physiological breeding II: a field guide to wheat phenotyping CIMMYT, Mexico, pp 25-27.

Nazim Uddin Md, Asaeda T, Shampa SH, Robinson RW (2020). Allelopathy and its coevolutionary implications between native and non‐native neighbors of invasive Cynara cardunculus L. Ecology and Evolution 10:7463-7475.

Puła J, Zandi P, Stachurska-Swakoń A, Barabasz-Krasny B, Możdżeń K, Wang Y (2020). Influence of alcoholic extracts from Helianthus annnus L. roots on the photosynthetic activity of Sinapis alba L. cv. Barka plants. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science 70:8-13.

Rezendes I, Roncaglio E, Baseggio, Galon L, Brandler D, Tiago C … Ferreira da Silva A (2020). Allelopathy of weeds on the growth of vegetables. Communication in Plant Sciences 10:7-17.

Roberts HA, Neilson JE (1981). Seed survival and periodicity of seedling emergence in twelve weedy species of Compositae. Annals of Applied Biology 97(3):253-334.

Scavo A, Restuccia A, Mauromicale G (2018). Allelopathy: principles and basic aspects for agroecosystem control. In: Gaba S, Smith B, Lichtfouse E (Eds). Sustainable Agriculture Reviews. Springer, Cham.

Scognamiglio M, D’Abrosca B, Esposito A, Pacifico S, Monaco P, Fiorentino A (2013). Plant growth inhibitors: allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochemistry Reviews 12:803-830.

Sell PD (1981). Lapsana intermedia Bieb. or Lapsana communis L. subsp. intermedia (Bieb.) Hayek? Watsonia 13:299-302.

Sołtys D, Krasuska U, Bogatek R, Gniazdowska A (2013). Allelochemicals as bioherbicides - present and perspectives. In: Price AJ, Kelton JA (Eds). Herbicides - current research and case studies in use. InTech, Rijeka, pp 517-542.

Stachurska-Swakoń A (2009). Syntaxonomical revision of the communities with Rumex alpinus L. in the Carpathians. Phytocoenologia 39(2):217-234.

Stanciu G, Lupsor S, Arcus M (2007). GC-MS characterization of the volatile oil from Lapsana communis L. Ovidius University Annals of Chemistry 18:72-75.

Towpasz K, Stachurska-Swakoń A (2008). Alder-ash and willow communities and their diversity in the Pogórze Strzyżowskie foothills (Western Carpathians). Acta Societatis Botanicorum Poloniae 77(4):327-338.

Urbano B, Gonzalez-Andres F, Ballesteros A (2006). Allelopathic potential of cover crops to control weeds in Barley. Allelopathy Journal 17:53-64.

Weber E, Gut D (2005). A survey of weeds that are increasingly spreading in Europe. Agronomy for Sustainable Development 25:109-121.

Xuan TD, Shinkichi T, Khanh TD, Chung IM (2005) Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An Overview. Crop Protection 24:197-206.

Zandi P, Barabasz-Krasny B, Stachurska-Swakoń A, Puła J, Możdżeń K (2018). Allelopathic effects of Stellaria media (L.) Vill. on germination and early stages of growth of Raphanus sativus var. radicula. Annales Universitatis Paedagogicae Cracoviensis Studia Naturae 3:90-99.




How to Cite

MOŻDŻEŃ, K., BARABASZ-KRASNY, B. ., STACHURSKA-SWAKOŃ, A. ., TURISOVÁ, I. ., & ZANDI, P. . (2021). Germination and growth of radish under influence of nipplewort aqueous extracts. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12195.



Research Articles
DOI: 10.15835/nbha49112195

Most read articles by the same author(s)

1 2 > >>