Biofortification potential in common bean (Phaseolus vulgaris L.): bioactive compounds, antioxidant capacity and physicochemical properties of 155 varieties grown in México


  • Alejandro PALACIO-MÁRQUEZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, V. Carranza y Escorza S/N. Col. Centro. 31000 Chihuahua, Chihuahua (MX)
  • Damaris OJEDA-BARRIOS Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, V. Carranza y Escorza S/N. Col. Centro. 31000 Chihuahua, Chihuahua (MX)
  • Jorge JIMÉNEZ-CASTRO Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, V. Carranza y Escorza S/N. Col. Centro. 31000 Chihuahua, Chihuahua (MX)
  • Pablo PRECIADO-RANGEL Instituto Tecnológico Nacional de México – Instituto Tecnológico de Torreón (ITT), 27170 Torreón, Coahuila (MX)
  • Ofelia A. HERNÁNDEZ-RODRÍGUEZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, V. Carranza y Escorza S/N. Col. Centro. 31000 Chihuahua, Chihuahua (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A. C., Avenida Cuarta Sur 3820 Fraccionamiento Vencedores del Desierto. 33089 Delicias, Chihuahua (MX)



biodiversity; biofortification; nutritional quality; Phaseolus sp.


Common bean has been classified as an almost perfect food due to its high content of fiber, protein and bioactive compounds and its high antioxidant capacity, which has been attributed to having prevent diabetes, oxidative stress, bowel inflammation and cardiovascular diseases. The objective of this research work was to characterize the physicochemical properties and bioactive compounds of 155 varieties of common bean (Phaseolus vulgaris L.) produced in Mexico with potential to be biofortified. The contents of protein, fiber, fat, carbohydrates and energy were analyzed by the methods established by the AOAC, in addition the antioxidant capacity (DPPH), the content of total phenols, flavonoids, anthocyanins and phytic acid were obtained. Cluster, correlation, and principal component analysis were conducted. A total of 14 outstanding varieties was identified, where four varieties stood out about phenol and flavonoid content. A second group comprised by 10 varieties had high protein and anthocyanin levels and showed the second highest content of phenols and flavonoids. The diversity of beans obtained in outstanding varieties provides options for biofortification programs based on the consumption or place of origin of each variety.


Acheson KJ, Campbell IT, Edholm OG, Miller DS, Stock MJ (1980). The measurement of food and energy intake in man-an evaluation of some techniques. American Journal of Clinical Nutrition 33(5):1147-1154.

Akond AGM, Heath Crawford JB, Talukder ZI, Hossain K (2011). Minerals (Zn, Fe, Ca and Mg) and antinutrient (phytic acid) constituents in common bean. American Journal of Food Technology 6(3):235.

Akond AGM, Khandaker L, Berthold J, Gates L, Peters K, Delong H, Hossain K (2011). Anthocyanin, total polyphenols and antioxidant activity of common bean. American Journal of Food Technology 6(5):385-394.

American Diabetes Association (2015). Índice glucémico y diabetes. Retrieved 2018 September 28 from

AOAC (2000). Association of official analytical chemist. In: AOAC International (Ed). Official Methods of Analysis (17th). Guithersbur, MD, EE. UU.

Boateng J, Verghese M, Walker LT, Ogutu S (2008). Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT-Food Science and Technology 41(9):1541-1547.

Brand-Williams W, Cuvelier ME, Berset, CLWT (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1):25-30.

Câmara CR, Urrea CA, Schlegel V (2013). Pinto beans (Phaseolus vulgaris L.) as a functional food: Implications on human health. Agriculture 3(1):90-111.

Campos‐Vega R, Reynoso‐Camacho R, Pedraza‐Aboytes G, Acosta‐Gallegos JA, Guzman‐Maldonado SH, Paredes‐Lopez O, Loarca‐Piña G (2009). Chemical composition and in vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.). Journal of Food Science 74(7):59-65.

Chávez-Mendoza C, Sánchez E (2017). Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules 22(8):1360.

Díaz-Batalla L, Widholm JM, Fahey GC, Castaño-Tostado E, Paredes-López O (2006). Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 54(6):2045-2052.

Espinosa-Alonso LG, Lygin A, Widholm JM, Valverde ME, Paredes-Lopez O (2006). Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 54(12):4436-4444.

FIRA (2016). Panorama agroalimentario: Frijol. Fideicomisos Instituidos en Relación con la Agricultura pp 1-37.

Gan RY, Wang MF, Lui WY, Wu K, Dai SH, Sui ZQ, Corke H (2017). Diversity in antioxidant capacity, phenolic contents, and flavonoid contents of 42 edible beans from China. Cereal Chemistry 94(2):291-297.

García-Díaz YD, Aquino-Bolaños EN, Chávez-Servia JL, Vera-Guzmán AM, Carrillo-Rodríguez JC (2018). Bioactive compounds and antioxidant activity in the common bean are influenced by cropping season and genotype. Chilean Journal of Agricultural Research 78(2):255-265.

Garretson L, Tyl C, Marti A (2018). Effect of processing on antioxidant activity, total phenols, and total flavonoids of pigmented Heirloom beans. Journal of Food Quality 7836745:1-6.

Gutierrez J (2012). Calidad de vida, alimentos y salud humana: fundamentos científicos [Quality of life, food and human health: scientific foundations]. In: de Santos D (Ed). 1st Ed, Madrid, pp 64-66.

Huber K, Brigide P, Bretas EB, Canniatti-Brazaca SG (2016). Phenolic acid, flavonoids and antioxidant activity of common brown beans (Phaseolus vulgaris L.) before and after cooking. Journal of Nutrition and Food Sciencies 6:1-7.

Iniestra-González JJ, Ibarra-Pérez FJ, Gallegos-Infante JA, Rocha-Guzmán NE, González-Laredo RF (2005). Factores antinutricios y actividad antioxidante en variedades mejoradas de frijol común (Phaseolus vulgaris) [Antinutritional factors and antioxidant activity in improved varieties of common bean (Phaseolus vulgaris)]. Agrociencia 39(6).

Korus J, Gumul D, Czechowska K (2007) Effect of extrusion on the phenolic composition and antioxidant activity of dry beans of Phaseolus vulgaris L. Food Technology and Biotechnology 45(2):139-146.

Lara-Flores M (2015). El cultivo del frijol en México [The cultivation of beans in Mexico]. Revista Digital Universitaria UNAM 16(2):9.

McKie VA, McCleary BV (2016). A novel and rapid colorimetric method for measuring total phosphorus and phytic acid in foods and animal feeds. Journal of AOAC International 99(3):738-743.

Mederos Y (2006). Indicadores de la calidad en el grano de frijol (Phaseolus vulgaris L.). [Quality indicators in bean (Phaseolus vulgaris L.)]. Cultivos Tropicales 27:55-63.

Messina V (2014). Nutritional and health benefits of dried beans. The American Journal of Clinical Nutrition 100(1):437S-442S.

Peyrat-Maillard MN, Bonnely S, Berset C (2000). Determination of the antioxidant activity of phenolic compounds by coulometric detection. Talanta 51(4):709-716.

Sánchez-Chávez E, García-Bañuelos M, Sida-Arreola J, Muñoz-Márquez E (2013). Estrategia de Innovación para mejorar la calidad nutricional y calidad antioxidante en frijol a través del proceso de biofortificación con hierro y zinc [Innovation strategy to improve nutritional quality and antioxidant quality in beans through the biofortification process with iron and zinc]. Romero L (Ed). 1st ed. Granada, España, pp 120.

Sida-Arreola JP, Sánchez E, Ávila-Quezada GD, Acosta-Muñíz CH, Zamudio-Flores PB (2015). Biofortificación con micronutrientes en cultivos agrícolas y su impacto en la nutrición y salud humana [Biofortification with micronutrients in agricultural crops and their impact on nutrition and human health]. Tecnociencia Chihuahua 9(2):67-74.

Silva-Cristobal L, Osorio-Díaz P, Tovar J, Bello-Pérez LA (2010) Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties. CyTA-Journal of Food 8(1):7-14.

SPSS (2011). IBM SPSS statistics base 20. Chicago, IL: SPSS Inc.

Suárez-Martínez SE, Ferriz-Martínez RA, Campos-Vega R, Elton-Puente JE, de la Torre Carbot K, García-Gasca T (2016) Bean seeds: leading nutraceutical source for human health. CyTA-Journal of Food 14(1):131-137.

Ulloa A, Ulloa P, Ramírez J, Ulloa B (2011). El frijol (Phaseolus vulgaris): su importancia nutricional y como fuente de fitoquímicos [The bean (Phaseolus vulgaris): its nutritional importance and as a source of phytochemicals]. Revista Fuente 3(8):5-9.

USDA (2018). Food Composition Databases Show Foods - Beans, pinto, mature seeds, raw (Includes foods for USDA's Food Distribution Program). Retrieved 2018 September 25 from:

Wrolstad RE (1976). Color and pigment analysis in fruit products. S Bulletin. 624 Agricultural Experiment Station, Oregon State University, Corvallis.

Xu B, Chang SK (2009). Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. Journal of Agricultural and Food Chemistry 57(11):4754-4764.

Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4):555-559.




How to Cite

PALACIO-MÁRQUEZ, A. ., OJEDA-BARRIOS, D., JIMÉNEZ-CASTRO, J. ., PRECIADO-RANGEL, P. ., HERNÁNDEZ-RODRÍGUEZ, O. A., & SÁNCHEZ, E. . (2021). Biofortification potential in common bean (Phaseolus vulgaris L.): bioactive compounds, antioxidant capacity and physicochemical properties of 155 varieties grown in México. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12123.



Research Articles
DOI: 10.15835/nbha49112123

Most read articles by the same author(s)

<< < 1 2 3 > >>