Rice seedlings showed a higher heat tolerance through the foliar application of biostimulants


  • Edinson H. QUINTERO-CALDERÓN Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Carrera 30 No. 45-03, Bogotá, 111321 (CO)
  • Alefsi D. SÁNCHEZ-REINOSO Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Carrera 30 No. 45-03, Bogotá, 111321 (CO)
  • Cristhian C. CHÁVEZ-ARIAS Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Carrera 30 No. 45-03, Bogotá, 111321 (CO)
  • Gabriel GARCES-VARON Federación Nacional de Arroceros, Seccional Saldaña, Carrera 18 No. 23-112, Saldaña, 733570 (CO)
  • Hermann RESTREPO-DÍAZ Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Carrera 30 No. 45-03, Bogotá, 111321 (CO)




amino acids; botanical extracts; brassinosteroids; high daytime temperature; leaf gas exchange; lipid peroxidation; nitrophenolates


The use of biostimulants is an agronomic tool to improve plant tolerance to abiotic stress in plants. This study explored the effect of foliar biostimulants sprays such as brassinosteroids (BR), amino acids (AA), nitrophenolates (NP) or a biostimulant based on botanical extracts (BE) on leaf gas exchange parameters [photosynthesis (PN), stomatal conductance (gs) and transpiration (E)], leaf photosynthetic pigments, lipid peroxidation of membranes and proline content of two commercial rice genotypes [‘Fedearroz 67’ and ‘Fedearroz 60’] under heat stress conditions. The established treatments were: i) plants without heat stress and foliar applications of biostimulants (C), ii) plants under heat stress and without foliar applications of biostimulants (HT), and iii) plants with heat stress and three foliar applications with BR (1 mL·L-1), AA (30 mL·L-1), NP (15 mL·L-1) or BE (15 mL·L-1). The results showed that the application of BR, AA, NP or BE increased the values ​​of PN (~14.5 µmol CO2·m-2·s-1), gs (~0.46 mmol·m-2·s-1) and E (~43.9 H20 day-1·plant-1) compared to plants (both genotypes) not treated with biostimulants under heat stress (9.9 µmol CO2·m-2·s-1 for PN, 0.31 mmol·m-2·s-1 for gs, and 27.3 H20 day-1·plant-1 for E). Foliar biostimulant sprays also caused a lower malondialdehyde and proline production in rice genotypes under heat stress. In conclusion, the biostimulants BR, AA, NP, or BE can be considered an agronomic strategy to help mitigate the adverse effects of heat stress in rice areas where periods of high temperatures are expected during the day in Colombia.


Ahammed GJ, Xu W, Liu A, Chen S (2018). COMT1 silencing aggravates heat stress induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Frontiers in Plant Science 9:998. https://doi.org/10.3389/fpls.2018.00998

Ahammed GJ, Li X, Liu A, Chen S (2020). Brassinosteroids in plant tolerance to abiotic stress. Journal of Plant Growth Regulation 1:4. https://doi.org/10.1007/s00344-020-10098-0

Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018). Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. Journal of Plant Growth Regulation 37:1007-1024. https://doi.org/10.1007/s00344-018-9855-2

Ali Q, Athar HB, Haider MZ, Shahid S, Aslam N, Shehzad F, … Hussain SM (2019). Role of amino acids in improving abiotic stress tolerance to plants. In: Hasanuzzaman M, Fujita M, Oku H, Islam MT (Eds). Plant Tolerance to Environmental Stress: Role of Phytoprotectants. CRC Press, Boca Raton, pp 175-203.

Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biological Research 51:46. https://doi.org/10.1186/s40659-018-0195-2

Bahuguna RN, Solis CA, Shi WJ, Jagadish KSV (2017). Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). Physiologia Plantarum 159(1):59-73. https://doi.org/10.1111/ppl.12485

Baninasab B, Ghobadi C (2011). Influence of paclobutrazol and application methods on high-temperature stress injury in cucumber seedlings. Journal of Plant Growth Regulation 30(2):213-219. https://doi.org/10.1007/s00344-010-9188-2

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207. https://doi.org/10.1007/BF00018060

Botta A (2013). Enhancing plant tolerance to temperature stress with amino acids: an approach to their mode of action. Acta Horticulturae 1009:29-35. https://doi.org/10.17660/ActaHortic.2013.1009.1

Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015). Biostimulants and crop responses: a review. Biological Agriculture & Horticulture 31:1-17. https://doi.org/10.1080/01448765.2014.964649

Bulgari R, Franzoni G, Ferrante A (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306. https://doi.org/10.3390/agronomy9060306

Carmody N, Goñi O, Łangowski Ł, O’Connell S (2020). Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Frontiers in Plant Science 11:807. https://doi.org/10.3389/fpls.2020.00807

Chen J, Tang L, Shi P, Yang B, Sun T, Cao W, Zhu Y (2017a). Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma 254:935-943. https://doi.org/10.1007/s00709-016-1002-y

Chen Q, Zhao X, Lei D, Hu S, Shen Z, Shen W, Xu X (2017b). Hydrogen-rich water pretreatment alters photosynthetic gas exchange, chlorophyll fluorescence, and antioxidant activities in heat-stressed cucumber leaves. Plant Growth Regulation 83:69-82. http://dx.doi.org/10.1007%2Fs10725-017-0284-1

Counce PA, Keisling TC, Mitchell AJ (2000). A uniform, objective, and adaptive system for expressing rice development. Crop Science 40:436-443. https://doi.org/10.2135/cropsci2000.402436x

Djanaguiraman M, Sheeba JA, Devi DD, Bangarusamy U (2009). Cotton leaf senescence can be delayed by nitrophenolate spray through enhanced antioxidant defense system. Journal of Agronomy and Crop Science 195:213-224. https://doi.org/10.1111/j.1439-037X.2009.00360.x

Djanaguiraman M, Sheeba JA, Devi DD, Bangarusamy U, Prasad PVV (2010). Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels. Journal of Plant Physiology 167:1-9. https://doi.org/10.1016/j.jplph.2009.05.018

Drobek M, Frąc M, Cybulska J (2019). Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress-a review. Agronomy 9:335. https://doi.org/10.3390/agronomy9060335

du Jardin P (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, … Huang J (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science 8:1147. http://dx.doi.org/10.3389/fpls.2017.01147

Fan YH, Ma CX, Huang ZL, Abid M, Jiang SY, Dai TB, … Han X (2018). Heat priming during early reproductive stages enhances thermo-tolerance to post-anthesis heat stress via improving photosynthesis and plant productivity in winter wheat (Triticum aestivum L.). Frontiers in Plant Science 9:805. https://doi.org/10.3389/fpls.2018.00805

Farooq M, Rizwan M, Nawaz A, Rehman A, Ahmad R (2017). Application of natural plant extracts improves the tolerance against combined

terminal heat and drought stresses in bread wheat. Journal of Agronomy and Crop Science 203:528-538. https://doi.org/10.1111/jac.12214

Federarroz (Federación Nacional de Arroceros) (2019). On line statistical database: Area, production and yields in Colombia. Retrieved 2020 September 30 from http://www.fedearroz.com.co/new/apr_public.php

Flexas J, Gulías J, Jonasson S, Medrano H, Mus M (2001). Seasonal patterns and control of gas exchange in local populations of the Mediterranean evergreen shrub Pistacia lentiscus L. Acta Oecologica 22:33-43. https://doi.org/10.1016/S1146-609X(00)01099-7

Francesca S, Arena C, Hay Mele B, Schettini C, Ambrosino P, Barone A, Rigano MM (2020). The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy 10(3):363. https://doi.org/10.3390/agronomy10030363

Garces-Varón G, Puentes OM (2019). Efecto de la condición de luminosidad sobre el comportamiento de nuevas variedades de arroz [Effect of the light condition on the behavior of new rice varieties]. Revista Arroz 67:10-16.

Garcés-Varon G, Restrepo-Díaz H (2015). Growth and yield of rice cultivars sowed on different dates under tropical conditions. Ciencia e investigación agraria 42(2):217-226. http://dx.doi.org/10.4067/S0718-16202015000200008

Gulluoglu L, Arioglu H, Arslan M (2006). Effects of some plant growth regulators and nutrient complexes on above-ground biomass and seed yield of soybean grown under heat-stressed environment. Journal of Agronomy 5(1):126-130.

Harsh A, Sharma YK, Joshi U, Rampuria S, Singh G, Kumar S, Sharma R (2016). Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Annals of Agricultural Sciences 61:57-64. https://doi.org/10.1016/j.aoas.2016.02.001

Hatfield JL, Prueger JH (2015). Temperature extremes: effect on plant growth and development. Weather and Climate Extremes 10:4-10. https://doi.org/10.1016/j.wace.2015.08.001

Hirabayashi H, Sasaki K, Kambe T, Gannaban RB, Miras MA, Mendioro MS, … Ishimaru T (2014). qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa L. Journal of Experimental Botany 66:1227-1236. https://doi.org/10.1093/jxb/eru474

Hodges DM, DeLong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-611. https://doi.org/10.1007/s004250050524

Hussain HA, Men S, Hussain S, Chen Y, Ali S, Ali S, … Wang L (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports 9:3890. https://doi.org/10.1038/s41598-019-40362-7

IPCC (2014). Climate Change 2014: Synthesis Report. In: Pachauri RK and Meyer LA (Eds). Core Writing Team, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, pp 151.

Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, … Ourry A (2013). Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. Journal of Plant Growth Regulation 32:31-52. https://doi.org/10.1007/s00344-012-9273-9

Kazda J, Herda G, Spitzer T, Řičařová V, Przybysz A, Gawrońska H (2015). Effect of nitrophenolates on pod damage caused by the brassica pod midge on the photosynthetic apparatus and yield of winter oilseed rape. Journal of Pest Science 88:235-247. https://doi.org/10.1007/s10340-014-0603-5

Kerchev P, Van Der Meer T, Sujeeth N, Verlee A, Stevens CV, Van Breusegem F, Gechev T (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advances 40:107503. https://doi.org/10.1016/j.biotechadv.2019.107503

Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SV, Kusolwa P, Rathinasabapathi B (2018). Heat stress tolerance in rice (Oryza sativa L.): Identification of quantitative trait loci and candidate genes for seedling growth under heat stress Frontiers in Plant Science 9:1578. https://doi.org/10.3389/fpls.2018.01578

Li Z, Yu J, Peng Y, Huang B (2016). Metabolic pathways regulated by g-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports 6:30338. https://doi.org/10.1038/srep30338

Liu YZ, Bin T, Zheng YL, Xu SZ, Qiu FZ (2010). Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agricultural Sciences in China 9:362-369. https://doi.org/10.1016/S1671-2927(09)60105-X

Lucini L, Rouphael Y, Cardarelli M, Canguier R, Kumar P, Colla G (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae 182:124-133. https://doi.org/10.1016/j.scienta.2014.11.022

Mansori M, Chernane H, Latique S, Benaliat A, Hsissou D, El Kaoua M (2016). Effect of seaweed extract (Ulva rigida) on the water deficit tolerance of Salvia officinalis L. Journal of Applied Phycology 28(2):1363-1370. https://doi.org/10.1007/s10811-015-0671-9

Matysiak K, Kierzek R, Siatkowski I, Kowalska J, Krawczyk R (2020). Effect of exogenous application of amino acids l-arginine and glycine on maize under temperature stress. Agronomy 10(6):769. https://doi.org/10.3390/agronomy10060769

Nguyen HC., Lin KH, Ho SL, Chiang CM, Yang CM (2018). Enhancing the abiotic stress tolerance of plants: from chemical treatment to biotechnological approaches. Physiologia Plantarum 164:452-466. https://doi.org/10.1111/ppl.12812

Nigam D, Kumar S, Mishra DC, Rai A, Smita S, Saha A (2015). Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza sativa spp. Gene 555(2):127-139. https://doi.org/10.1016/j.gene.2014.10.054

Povero G, Mejia JF, Di Tommaso D, Piaggesi A, Warrior P (2016). A systematic approach to discover and characterize natural plant biostimulants. Frontiers in Plant Science 7:435. https://doi.org/10.3389/fpls.2016.00435

Price MB, Jelesko J, Okumoto S. 2012. Glutamate receptor homologs in plants: functions and evolutionary origins. Frontiers in Plant Science 3:235. https://doi.org/10.3389/fpls.2012.00235

Priya M, Sharma L, Kaur R, Bindumadhava H, Nair RM, Siddique KHM, Nayyar H (2019). GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Scientific Reports 9:7788. https://doi.org/10.1038/s41598-019-44163-w

Przybysz A, Gawronska H, Gajc-wolska J (2014). Biological mode of action of anitrophenolates-based biostimulant: case study. Frontiers in Plant Science 5:713. https://doi.org/10.3389/fpls.2014.00713

Radhakrishna NKA., Chenniappan V, Dhashnamurthi V (2018). Combined effects of drought and moderately high temperature on the photosynthesis, PS II photochemistry and yield traits in rice (Oryza sativa L.). Indian Journal of Plant Physiology 23(3):408-415. https://doi.org/10.1007/s40502-018-0386-4

Rajewska I, Talarek M, Bajguz A (2016). Brassinosteroids and response of plants to heavy metals action. Frontiers in Plant Science 7:629. https://doi.org/10.3389/fpls.2016.00629

Ramirez-Villegas J, Salazar M, Jarvis A, Navarro-Racines CE (2012). A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050. Climatic Change 115:611-628. http://dx.doi.org/10.1007/s10584-013-0731-6

Rashid N, Basra SM, Shahbaz M, Iqbal S, Hafeez MB (2018). Foliar applied moringa leaf extract induces terminal heat tolerance in quinoa. International Journal of Agriculture and Biology 20:157-164. https://dx.doi.org/10.17957/IJAB/15.0469

Restrepo-Díaz H. Garces-Varon G (2013). Response of rice plants to heat stress during initiation of panicle primordia or grain-filling phases. Journal of Stress Physiology & Biochemistry 9:319-325.

Sadura I, Janeczko A (2018). Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biologia Plantarum 64:601-616. https://doi.org/10.1007/s10535-018-0805-4

Sahu GK (2013). Salicylic acid: role in plant physiology and stress tolerance. In: Rout GR, Das AB (Eds). Molecular Stress Physiology of Plants. Springer, India, pp 217-239.

Sánchez-Reinoso AD, Garces-Varon G, Restrepo-Diaz H. 2014. Biochemical and physiological characterization of three rice cultivars under different daytime temperature conditions. Chilean Journal of Agricultural Research 74:373-379. http://dx.doi.org/10.4067/S0718-58392014000400001

Santaniello A, Scartazza A, Gresta F, Loreti E, Biasone A, Di Tommaso D, … Perata P (2017). Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Frontiers in Plant Science 8:1362. https://doi.org/10.3389/fpls.2017.01362

Sharma I, Kaur N, Pati PK (2017). Brassinosteroids: a promising option in deciphering remedial strategies for abiotic stress tolerance in rice. Frontiers in Plant Science 8:2151. https://doi.org/10.3389/fpls.2017.02151

Shin H, Oh S, Arora R, Kim D (2016). Proline accumulation in response to high temperature in winter-acclimated shoots of Prunus persica: a response associated with growth resumption or heat stress?. Canadian Journal of Plant Science 96(4):630-638. https://doi.org/10.1139/cjps-2015-0372

Sims DA, Gamon JA (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81:337-354. https://doi.org/10.1016/S0034-4257(02)00010-X

Sonjaroon W, Jutamanee K, Khamsuk O, Thussagunpanit J, Kaveeta L, Suksamrarn A (2018). Impact of brassinosteroid mimic on photosynthesis, carbohydrate content and rice seed set at reproductive stage under heat stress. Agriculture and Natural Resources 52(3):234-240. https://doi.org/10.1016/j.anres.2018.09.001

Swaefy HM, El-Ziat RA (2017). Response of double-flowered Marigold to salinity and biostimulant applications. Middle East Journal of Agriculture Research 6(4):1519-1525.

Szparaga A, Kocira S, Kocira A, Czerwińska E, Świeca M, Lorencowicz E, … Oniszczuk T (2018). Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Frontiers in Plant Science 9:1401. https://doi.org/10.3389/fpls.2018.01401

Tanveer M (2019). Role of 24-Epibrassinolide in inducing thermo-tolerance in plants. Journal of Plant Growth Regulation 38:945-955. https://doi.org/10.1007/s00344-018-9904-x

Teixeira WF, Fagan EB, Soares LH, Soares JN, Reichardt K, Neto DD (2018). Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Frontiers in Plant Science 9:396. https://doi.org/10.3389/fpls.2018.00396

Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-arree W, Pankean P, Homvisasevongsa S, Suksamrarn A (2015a). Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. Journal of Plant Growth Regulation 34(2):320-331. https://doi.org/10.1007/s00344-014-9467-4

Thussagunpanit J, Jutamanee K, Sonjaroon W, Kaveeta L, Chai-Arree W, Pankean P, Suksamrarn A (2015b). Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica 53:312-320. https://doi.org/10.1007/s11099-015-0106-5

Valero D, Zapata PJ, Martínez-Romero D, Guillén F, Castillo S, Serrano M (2014). Pre-harvest treatments of pepper plants with nitrophenolates increase crop yield and enhance nutritive and bioactive compounds in fruits at harvest and during storage. Food Science and Technology International 20(4):265-274. https://doi.org/10.1177%2F1082013213483137

Van Oosten MJ, Pepe O, Pascale S, de Silletti S, Maggio A (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture 4:5. https://doi.org/10.1186/s40538-017-0089-5

Vijayakumari K, Puthur JT (2016). g-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn: plants subjected to PEG-induced stress. Plant Growth Regulation 78:57-67. https://doi.org/10.1007/s10725-015-0074-6

Vivitha P, Raveendran M, Vijayalakshmi C, Vijayalakshmi D (2018). Genetic dissection of high temperature stress tolerance using photosynthesis parameters in QTL introgressed lines of rice cv. Improved White Ponni. Indian Journal of Plant Physiology 23(4):741-747. https://doi.org/10.1007/s40502-018-0408-2

Wang K, Wambugu PW, Zhang B, Wu AC, Henry RJ, Gilbert RG (2015). The biosynthesis, structure and gelatinization properties of starches from wild and cultivated African rice species (Oryza barthii and Oryza glaberrima). Carbohydrate Polymers 129:92-100. https://doi.org/10.1016/j.carbpol.2015.04.035

Wang YL, Wang L, Zhou JX, Hu SB, Chen HZ, Xiang J, … Zhang YP (2019). Research progress on heat stress of rice at flowering stage. Rice Science 26:1-10. https://doi.org/10.1016/j.rsci.2018.06.009

Wassie M, Zhang W, Zhang Q, Ji K, Chen L (2019). Effect of heat stress on growth and physiological traits of alfalfa (Medicago sativa L.) and a comprehensive evaluation for heat tolerance. Agronomy 9(10):597. https://doi.org/10.3390/agronomy9100597

Wellburn RW (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144:307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

Yadava P, Kaushal J, Gautam A, Parmar H, Singh I (2016). Physiological and biochemical effects of 24-epibrassinolide on heat-stress adaptation in maize (Zea mays L.). Natural Science 8(4):171-179. http://dx.doi.org/10.4236/ns.2016.84020

Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant Science 7:2049. https://doi.org/10.3389/fpls.2016.02049

Yao Y, Wang X, Chen B, Zhang M, Ma J (2020). Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega 5(8):4242-4249. https://doi.org/10.1021/acsomega.9b04155

Yin C, Berninger F, Li C (2006). Photosynthetic responses of Populus przewalski subjected to drought stress. Photosynthetica 44:62-68. https://doi.org/10.1007/s11099-005-0159-y

Zafar SA, Hameed A, Nawaz MA, Wei M, Noor MA, Hussain M, Rehman M (2018). Mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario. Journal of Integrative Agriculture 17(4):726738. https://doi.org/10.1016/S2095-3119(17)61718-0

Zhang X, Ervin EH (2008). Impact of seaweed extract-based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Science 48:364-370. https://doi.org/10.2135/cropsci2007.05.0262

Zhang X, Wang K, Ervin EH (2010). Optimizing dosages of seaweed extract-based cytokinins and zeatin riboside for improving creeping bentgrass heat tolerance. Crop Science 50:316-320. https://doi.org/10.2135/cropsci2009.02.0090

Zhou J, Wang J, Li X, Xia XJ, Zhou YH, Shi K, … Yu JQ (2014). H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. Journal of Experimental Botany 65:4371-4383. https://doi.org/10.1093/jxb/eru217




How to Cite

QUINTERO-CALDERÓN, E. H. ., SÁNCHEZ-REINOSO, A. D. ., CHÁVEZ-ARIAS, C. C., GARCES-VARON, G. ., & RESTREPO-DÍAZ, H. . (2021). Rice seedlings showed a higher heat tolerance through the foliar application of biostimulants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(1), 12120. https://doi.org/10.15835/nbha49112120



Research Articles
DOI: 10.15835/nbha49112120