Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans

  • Alondra SALCIDO-MARTÍNEZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km. 2.5 carretera a Rosales, Poniente, 33000 Delicias, Chihuahua (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Delicias, Av. Cuarta Sur 3828, Fracc. Vencedores del Desierto. 33089 Delicias, Chihuahua (MX)
  • Lorena P. LICÓN-TRILLO Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km. 2.5 carretera a Rosales, Poniente, 33000 Delicias, Chihuahua (MX)
  • Sandra PÉREZ-ÁLVAREZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km. 2.5 carretera a Rosales, Poniente, 33000 Delicias, Chihuahua (MX)
  • Alejandro PALACIO-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Delicias, Av. Cuarta Sur 3828, Fracc. Vencedores del Desierto. 33089 Delicias, Chihuahua (MX)
  • Nubia I. AMAYA-OLIVAS Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Campus Universitario I, 31000, Chihuahua, Chihuahua (MX)
  • Pablo PRECIADO-RANGEL Tecnológico Nacional de México– Instituto Tecnológico de Torreón (ITT), 27170 Torreón, Coahuila (MX)
Keywords: chlorophyll; nanoparticles; Phaseolus vulgaris L.; nanotechnology

Abstract

One of the most significant challenges humanity will face is food production. In order to preserve the output, mineral fertilizers are essential. However, it's not a suitable option in the long term. Magnesium is a crucial macronutrient, but it is the most limiting element in agriculture. Nanotechnology, with the implementation of nanofertilizers, is an excellent alternative since it provides nutrients, supports growth, and improves production; this in low amounts is more sustainable than conventional fertilizers. Although there is a piece of limited information regarding the proper foliar application of this macronutrient, the study helped to validate the effect of the foliar application of Magnesium nano fertilizer on the physiological, biochemical responses and yield of bean plants. Bean plants ejotero cv. ‘Strike’ and magnesium nanoparticles were applied at doses of 0, 50, 100, and 200 ppm. The biomass accumulation, yield, activity of the enzyme nitrate reductase, and photosynthetic pigments were evaluated. The foliar application of Mg nanoparticles at 50 ppm generated the highest amount of biomass and photosynthetic pigments. The 100 ppm dose improved pods yield and allowed the increased activity of the Nitrate Reductase enzyme. The results obtained suggest that, when increasing the dose of magnesium in plants, the amount of carotenes decreases.

Metrics

Metrics Loading ...

References

Azcón-Bieto J, Bou IF, Aranda X, Casanovas NG (2008). Fotosíntesis, factores ambientales y cambio climático. In: Fundamentos de fisiología vegetal [Photosynthesis, environmental factors and climate change. In: Fundamentals of plant physiology]. McGraw-Hill Interamericana de España pp 247-263.

Baethgen WE, Alley MM (1989). A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant. Communications in Soil Science and Plant Analysis 20:961-969. https://doi.org/10.1080/00103628909368129

Butt BZ, Naseer I (2020). Nanofertilizers. In: Javad S (Ed). Nanoagronomy. Springer, Cham.

https://doi.org/10.1007/978-3-030-41275-3_8

Cakmak I, Hengeler C, Marschner H (1994). Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany 278:1251-1257. https://www.jstor.org/stable/23694596

Cambrón VH, España ML, Sánchez NM, Sáenz C, Vargas JJ, Herrerías Y (2011). Producción de clorofila en Pinus pseudostrobus en etapas juveniles bajo diferentes ambientes de desarrollo [Chlorophyll production in Pinus pseudostrobus in juvenile stages under different development environments]. Revista Chapingo Serie Ciencias Forestales y del Ambiente 17(2):253-260. https://dx.doi.org/10.5154/r.rchscfa.2010.09.077

Cardona C, Flor CA, Morales F, Pastor MA (1995). Problemas de campo en cultivos de fríjol en el trópico. En: Centro Internacional de Agricultura Tropical (CIAT) [Field problems in bean crops in the tropics. In: International Center for Tropical Agriculture]. Cali, Colombia pp 1-5.

Casierra F, Ávila O, Riascos D (2012). Cambios diarios del contenido de pigmentos fotosintéticos en hojas de caléndula bajo sol y sombra [Daily changes of photosynthetic pigment content in calendula leaves under sun and shade]. Temas Agrarios 17(1):60-71. https://doi.org/10.21897/rta.v17i1.697

Centritto M, Loreto F, Chartzoulakis K (2003). The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of sal-stressed olive saplings. Plan, Cell and Environment 26:585-594. https://doi.org/10.1046/j.1365-3040.2003.00993.x

Chávez-Simental JA, Alvarez-Reyna VDP (2012). Ecofisiología de seis variedades de frijol bajo las condiciones climáticas de la Región Lagunera [Ecophysiology of six bean varieties under the climatic conditions of the Lagoon Region]. Revista Mexicana de Ciencias Agrícolas 3(2):299-309.

Chhipa H (2016). Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15(1):15-22. https://doi.org/:10.1007/s10311-016-0600-4

Cunha A, Katz L, Sousa A, Martinez RA (2015). Indice SPAD en el crecimiento y desarrollo de plantas de lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido [SPAD index in the growth and development of lisianthus plants as a function of different doses of nitrogen in a protected environment]. Idesia (Arica) 33(2):97-105. https://dx.doi.org/10.4067/S0718-34292015000200012

De la Fuente M, López M, Alonso J, Santalla M, De Ron A, Álvarez G Zapata C (2012). Phaseolin Protein Diversity of Common Bean. Food Technology and Biotechnology 50 (3):315-325.

Delfani M, Baradarn M, Farrokhi N, Makarian H (2014). Some Physiological Responses of Black-Eyed Pea to Iron and Magnesium Nanofertilizers. Communications in Soil Science and Plant Analysis 45(4):530-540. https://doi.org/10.1080/00103624.2013.863911

Esquivel G, Acosta JA, Rosales R, Pérez P, Hernández JM, Navarrete R, Muruaga JS (2006). Productividad y adaptación del frijol ejotero en el Valle de México [Productivity and adaptation of the green bean in the Valley of Mexico]. Revista Chapingo Serie Horticultura 12(1):119-126.

Etchevers JD (1999). Técnicas de diagnóstico útiles en la medición de la fertilidad del suelo y el estado nutrimental de los cultivos [Useful diagnostic techniques in measuring soil fertility and the nutritional status of crops]. Terra Latinoamericana 17(3):209-219. https://www.redalyc.org/articulo.oa?id=573/57317305

Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M (2016). Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta physiologiae plantarum 38(6):145. https://doi.org/10.1007/s11738-016-2165-z

FIRA (2019). Fideicomisos Instituidos en Relación con la Agricultura. Retrieved 2020 August from https://www.inforural.com.mx/wp-content/uploads/2020/01/PanoramaAgroalimentario-Frijol-2019.pdf

Fischer ES, Bremer E (1993). Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation, and net assimilation in Phaseolus vulgaris. Physiologia Plantarum 89(2):271-276.

https://doi.org/10.1111/j.1399-3054.1993.tb00153.x

Fischer ES, Lohaus G, Heineke D, Heldt HW (1998). Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiologia Plantarum 102(1):16-20.

https://doi.org/10.1034/j.1399-3054.1998.1020103.x

García FJ, Roselló-Caselles J, Santamarina MP (2006). Introducción al funcionamiento de las plantas. Editorial: Universidad Politécnica de Valencia. Valencia, España pp 181.

Johnson GN, Scholes JD, Horton P, Young AJ (1993). Relationshipsbetween carotenoid composition and growth habit in British plantspecies. Plant Cell Environment 16:681-686. https://doi.org/10.1111/j.1365-3040.1993.tb00486.x

Karacan S, Aslantas N (2008). Simultaneous preconcentration and removal of iron, chromium, nickel with N, N-etylenebis-(ethane sulfonamide) ligand on activated carbon in aqueous solution and determination by ICP-OES Mehmet. Journal of Hazardous Materials 155:551-557. https://doi.org/10.1016/j.jhazmat.2007.11.107

Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar JC (2012). Magnesium and iron nanoparticles production using microorganisms and various salts. Materials Science Poland 30:254-258.

https://doi.org/10.2478/s13536-012-0028-x

Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017). Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry 110:194-209. https://doi.org/10.1016/j.plaphy.2016.05.038

Kocal N, Sonnewald U, Sonnewald S (2008). Cell wall-bound invertase limits sucrose export and is involved in sympton development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiology 148:1523-1536. https://doi.org/10.1104/pp.108.127977

Liu R, Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of The Total Environment 514:131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104

Mahawar H, Prasanna R, Simranjit K, Thapa S, Kanchan A, Singh R, … Nain L (2017). Deciphering the mode of interactions of nanoparticles with mung bean (Vigna radiata L.). Israel Journal of Plant Sciences 1-9. https://doi.org/10.1080/07929978.2017.1288516

Maldonado JM (2013). Asimulación del nitrógeno y del azufre [Assimilation of nitrogen and sulfur]. Azcón-Bieto. In Fundamentos de Fisiología Vegetal; Talón, M., Ed.; McGraw-Hill Interamericana: Madrid, España pp 287-304.

Marschener P (2012). Marschner's Mineral Nutrition of Higher Plants. San Diego, California, Estados Unidos de America: Academic Press.

Mauriño SG, Echevarria C, Mejias JA, Vargas MA, Maldonado JM (1986). Properties of the in vivo nitrate reductase assay in maize, soybean, and spinach leaves. Journal of Plant Physiology 124:123-130.

https://doi.org/10.1016/S0176-1617(86)80184-5

McSwain BD, Tsujimoto HY, Arnon DI (1976). Effects of magnesium and chloride ions on light-induced electron transport in membrane fragments from a blue-green alga. Biochimica et Biophysica Acta 423:313-322. https://doi.org/10.1016/0005-2728(76)90188-2

Meléndez AJ, Vicario IM, Heredia FJ (2004). Importancia nutricional de los pigmentos carotenoides. Archivos Latinoamericanos de Nutrición 54(2):149-155.

Meloni DA, Silva DM, Ledesma R, Bolzón GI (2017). Mineral nutrition and photosynthesis of Prosopis alba (Fabaceae) seedlings under saline stress. Cuadernos de Investigación UNED 9:297-304.

Mengel K, Kirkby EA (2000). Principios de Nutrición Vegetal [Principals of vegetal nutrition]. Traducido 4ª Edición por Melgar RJ, Ruz M. International Posh Institute. Bailea, Suiza pp 692.

Mitra GN (2015). REgulation of nutrient uptake by plants. New Delhi: Springer 10:978-981.

https://doi.org/10.1007/978-81-322-2334-4

Neubauer H, Pantel I, Lindgren PE, Goetz F (1999). Characterization of the molybdate transport system ModABC of Staphylococcus carnosus. Archives of Microbiology 172:109-115. https://doi.org/10.1007/s002030050747

Neuhaus C, Geilfus CM, Mühling, KH (2014). Increasing root and leaf growth and yield in Mg-deficient faba beans (Vicia faba) by MgSO4 foliar fertilization. Journal of Plant Nutrition and Soil Science 177(5):741-747. https://doi.org/10.1002/jpln.201300127

Peil RM, Gálvez JL (2004). Reparto de materia seca como factor determinante de la producción de las hortalizas de fruto cultivadas en invernadero [Distribution of dry matter as a determining factor in the production of fruit vegetables grown in greenhouses]. Revista Brasileira de Agrociencia 11(1):05-11.

Ponce CO, Soto JM, Sánchez E, Muñoz E, Piña FJ, Flores MA, Pérez R, Yañez-Muñoz RM (2019). Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy 9(3):128. https://doi.org/10.3390/agronomy9030128

Raigón MD, García MD, Guerrero C, Esteve P (2006). Actividad del nitrato reductasa y su relación con los factores productivos en lechuga. VII Congreso SEAE Zaragoza 2006.

https://www.agroecologia.net/recursos/publicaciones/publicacionesonline/2006/CD%20Congreso%20Zaragoza/Ponencias/157%20Raig%C3%B3n%20Com-%20Actividad.pdf

Rathore I, Tarafdar JC (2015). Perspectives of biosynthesized magnesium nanoparticles in foliar application of wheat plant. Journal of Bionanoscience 9(3):209-214. https://doi.org/10.1166/jbns.2015.1296

Romero L (1995). Algunos aspectos de la nutrición mineral de las plantas superiors [Some aspects of mineral nutrition of superior plants]. Placido Cuadros, Granada, España.

Ruiz-Lozano JM, Azcon R (1996). Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agriculture, Ecosystems & Environment 60:175-181.

https://doi.org/10.1016/S0167-8809(96)01074-2

Sánchez E (2006). Caracterización del estado nutricional y fisiológico en plantas de judía (Phaseolus vulgaris L. cv. ‘Stricke’) sometidas a un estrés por nitrógeno [Characterization of the nutritional and physiological state in bean plants related to nitrogen stress]. Tesis doctoral, pp 3-11.

SAS (2004). SAS/STAT Users Guide: Statics, Ver. 9.00; SAS Institute, Inc.: Cary, NC, USA; pp 1503.

Seftor REB, Bahr JT, Jensen RG (1986). Measurement of the enzyme-CO2-Mg2+ form of spinach ribulose 1,5-bisphosphate carboxylase/oxygenase. Plant Physiology 80:599-600. https://doi.org/10.1021/bi00871a025

Shabala S, Hariadi Y (2005). Effects of magnesium availability on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta 221(1):56-65. https://doi.org/10.1007/s00425-004-1425-0

Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019). Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558. https://doi.org/10.3390/molecules24142558

Shaul O (2002). Magnesium transport and function in plants: the tip of the iceberg. BioMetals 15:309-323. https://doi.org/10.1023/A:1016091118585

Shinde S, Paralikar P, Ingle AP, Rai M (2018). Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arabian Journal of Chemistry https://doi.org/10.1016/j.arabjc.2018.10.001

Silbernagel MJ, Janssen W, Davis JHC, Montes De Oca G (1991). Snap bean production in the tropics: implications for genetic improvement, pp. 835- 862. In: Common Beans: Research for Crop Improvement. Van Schoonhoven A, Voysest O (Eds.). C.A.B. International. Wallingford, U.K. and CIAT, Cali, Colombia.

Singh-Diwakar B, Charmi V, Desai HG (2017). Effect of magnesium nanoparticles on physiology and stevioside in Stevia rebaudiana Bertoni.

Srivastava HS (1980). Regulation of nitrate reductase activity in higher plants. Phytochemistry 19(5):725-733. https://doi.org/10.1016/0031-9422(80)85100-4

Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015). Nanofertilizers and their smart delivery system. Nanotechnologies in Food and Agriculture 81-101. https://doi.org/10.1007/978-3-319-14024-7_4

Stagnari F, Onofri A, Pisante M (2009). Response of French bean (Phaseolus vulgaris L.) cultivars to foliar applications of magnesium. Italian Journal of Agronomy 4(3):101. https://doi.org/10.4081/ija.2009.3.101

Ustin SL, Smith MO, Jacquemoud S, Verstraete MM, Govaerts Y (1998). GeoBotany: vegetation mapping for earth sciences, in manual of remote sensing, remote sensing for the earth sciences (3rd ed). Rencz AN (Ed). John Wiley, Hoboken NJ 3:189248.

Villalobos E, Carvajal JF (1978). In método para analizar la actividad de la nitrato reductasa del nitrato en condiciones de campo [In method for analysing nitrate reductase activity of nitrate under field conditions]. Agronomia Costarricense 2(1):69-81.

Wellburn AR (1994). The spectral determination of chlorophylls a and b as well total carotenoids, using various solvents whit spectrophotometer of different mresolution. Journal of Plant Physiology 144:307-313. http://dx.doi.org/10.1016/S0176-1617(11)81192-2

White PJ, Broadley MR (2009). Biofortification of crops with seven mineral elements often lacking in human diets - iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182(1):49-84.

https://doi.org/10.1111/j.1469-8137.2008. 02738.x

Wolf B (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13(12):1035-1059. https://doi.org/10.1080/00103628209367332

Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012). Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees 26(4):1237-1250. http://dx.doi.org/10.1007/s00468-012-0699-2

Zhang Y, Chen JM, Thomas SC (2007). Retrieving seasonal variation in chlorophyll content of overstory and understory sugar maple leaves from leaf level hyperspectral data. Canadian Journal of Remote Sensing 33(5):406-415. https://doi.org/10.5589/m07-037

Published
2020-12-22
How to Cite
SALCIDO-MARTÍNEZ, A., SÁNCHEZ, E., LICÓN-TRILLO, L. P., PÉREZ-ÁLVAREZ, S., PALACIO-MÁRQUEZ, A., AMAYA-OLIVAS, N. I., & PRECIADO-RANGEL, P. (2020). Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2167-2181. https://doi.org/10.15835/nbha48412090
Section
Research Articles
CITATION
DOI: 10.15835/nbha48412090