Advance in mechanism of plant leaf colour mutation

  • Mingyue FU Yangtze University, Jingzhou 434025, Hubei (CN)
  • Shuiyuan CHENG Wuhan Polytechnic University, National R&D for Se-rich Agricultural Products Processing Technology, Wuhan 430023 (CN)
  • Feng XU Yangtze University, Jingzhou 434025, Hubei; Wuhan Polytechnic University, National R&D for Se-rich Agricultural Products Processing Technology, Wuhan 430023 (CN)
  • Zexiong CHEN Chongqing University of Arts and Sciences, College of Landscape Architecture and Life Science, Chongqing 402160 (CN)
  • Zhongbing LIU Wuhan University of Bioengineering, School of Horticulture and Landscape, Wuhan 430415 (CN)
  • Weiwei ZHANG Yangtze University, Jingzhou 434025, Hubei (CN)
  • Jiarui ZHENG Yangtze University, Jingzhou 434025, Hubei (CN)
  • Ling WANG Yangtze University, Jingzhou 434025, Hubei (CN)
Keywords: chlorophyll, chloroplast, leaf colour mutation, light; mutant, MEP pathway, temperature

Abstract

As a common mutation trait in plants, leaf colour mutation is related to the degree of chlorophyll and anthocyanin changes and the destruction of chloroplast structure. This study summarizes the latest research progress in leaf colour mutation mechanism, including the metabolic basis of plant leaf colour mutation, leaf colour mutation caused by gene mutation in the chlorophyll metabolism pathway, leaf colour mutation caused by blocked chloroplast development, leaf colour mutation controlled by key transcription factors and non-coding RNAs, leaf colour mutation caused by environmental factors, and leaf colour mutation due to the involvement of the mevalonate pathway. These results will lay a theoretical foundation for leaf colour development, leaf colour improvement, and molecular breeding for leaf colour among tree species.

Metrics

Metrics Loading ...

References

Ahn CS, Pai HS (2008). Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana. Plant Molecular Biology 66(5):503-517. https://doi.org/10.1007/s11103-007-9286-0

Akhter D, Qin R, Nath UK, Alamin M, Jin X, Shi C (2018). The brown midrib leaf (bml) mutation in rice (Oryza sativa L.) causes premature leaf senescence and the induction of defense responses. Genes 9(4):203. https://doi.org/10.3390/genes9040203

Albert NW, Davies KM, Schwinn KE (2014). Gene regulation networks generate diverse pigmentation patterns in plants. Plant Signaling & Behavior 9(9):962-80. https://doi.org/10.4161/psb.29526

Ansari MJ, Kumar R, Singh K, Dhaliwal HS (2012). Characterization and molecular mapping of EMS-induced brittle culm mutants of diploid wheat (Triticum monococcum L.). Euphytica 186(1):165-176.

Barry CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ (2008). Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiology 147(1):179-187. https://doi.org/10.1104/pp.108.118430

Beale SI (2005). Green genes gleaned. Trends in Plant Science 10(7):309-312. https://doi.org/10.1016/j.tplants.2005.05.005

Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Tripathy BC (2012). Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide an oxygenase in tobacco. Plant Physiology 159(1):433-449. https://doi.org/10.1104/pp.112.195859

Borovsky Y, Paran I (2008). Chlorophyll breakdown during pepper fruit ripening in the chlorophyll retainer mutation is impaired at the homolog of the senescence-inducible stay-green gene. Theoretical and Applied Genetics 117(2):235-240. https://doi.org/10.1007/s00122-008-0768-5

Budziszewski GJ, Lewis SP, Glover LW, Reineke J, Jones G, Ziemnik LS, ... McElver J (2001). Arabidopsis genes essential for seedling viability: isolation of insertional mutants and molecular cloning. Genetics 159(4):1765-1778.

Chao Y, Kang J, Zhang T, Yang Q, Gruber MY, Sun Y (2014). Disruption of the homogentisate solanesyltransferase gene results in albino and dwarf phenotypes and root, trichome and stomata defects in Arabidopsis thaliana. PloS One 9(4):e94031. https://doi.org/10.1371/journal.pone.0094031

Chen F, Dong G, Wu L, Wang F, Yang X, Ma X, ... Qian Q (2016). A nucleus-encoded chloroplast protein YL1 is involved in chloroplast development and efficient biogenesis of chloroplast ATP synthase in rice. Scientific Reports 6(1):1-14. https://doi.org/10.1038/srep32295

Chen H, Cheng Z, Ma X, Wu H, Liu Y, Zhou K, ... Guo X (2013). A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Reports 32(12):1855-1867. https://doi.org/10.1007/s00299-013-1498-y

Chen N, Wang P, Li C, Wang Q, Pan J, Xiao F, ... Sun C (2018). A single nucleotide mutation of the IspE gene participating in the MEP pathway for isoprenoid biosynthesis causes a green-revertible yellow leaf phenotype in rice. Plant and Cell Physiology 59(9):1905-1917. https://doi.org/10.1093/pcp/pcy108

Chen Z, Lu X, Xuan Y, Tang F, Wang J, Shi D, ... Ren J (2019). Transcriptome analysis based on a combination of sequencing platforms provides insights into leaf pigmentation in Acer rubrum. BMC Plant Biology 19(1):240. https://doi.org/10.1186/s12870-019-1850-7

Clement JS, Mabry TJ (1996). Pigment evolution in the Caryophyllales: a systematic overview. Botanica Acta 109(5):360-367. https://doi.org/10.1111/j.1438-8677.1996.tb00584.x

Deng XJ, Zhang HQ, Wang Y, He F, Liu JL, Xiao X, ... Wang GL (2014). Mapped clone and functional analysis of leaf-color gene Ygl7 in a rice hybrid (Oryza sativa L. ssp. indica). PloS One 9(6):e99564. https://doi.org/10.1371/journal.pone.0099564

Ding Y, Yang W, Su C, Ma H, Pan Y, Zhang X, Li J (2019). Tandem 13-lipoxygenase genes in a cluster confers yellow-green leaf in cucumber. International Journal of Molecular Sciences 20(12):3102. https://doi.org/10.3390/ijms20123102

Dong Y, Dong W, Shi S, Jin Q (2001). Identification and genetic analysis of a thermo-sensitive seedling-colour mutant in rice (Oryza sativa L.). Breeding Science 51(1):1-4.

Du W, Hu F, Yuan S, Liu C (2020). The identification of key candidate genes mediating yellow seedling lethality in a Lilium regale mutant. Molecular Biology Reports 1-13. https://doi.org/10.1007/s11033-020-05323-8

Du YY, Chen H, Zhong WL, Wu LY, Ye JH, Lin C, ... Liang YR (2008). Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant. African Journal of Biotechnology 7(12). https://doi.org/10.5897/AJB2008.000-5036

Estévez JM, Cantero A, Romero C, Kawaide H, Jiménez LF, Kuzuyama T, ... León P (2000). Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis. Plant Physiology 124(1):95-104. https://doi.org/10.1104/pp.124.1.95

Fitter DW, Martin DJ, Copley MJ, Scotland RW, Langdale JA (2002). GLK gene pairs regulate chloroplast development in diverse plant species. The Plant Journal 31(6):713-727. https://doi.org/10.1046/j.1365-313x.2002.01390.x

Gang H, Li R, Zhao Y, Liu G, Chen S, Jiang J (2019). The birch GLK1 transcription factor mutant reveals new insights in chlorophyll biosynthesis and chloroplast development. Journal of Experimental Botany 70:3125-3138. https://doi.org/10.1093/jxb/erz128

Gao H, Kadirjan-Kalbach D, Froehlich JE, Osteryoung KW (2003). ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proceedings of the National Academy of Sciences 100(7):4328-4333. https://doi.org/10.1073/pnas.0530206100

Gao S, Gao W, Liao X, Xiong C, Yu G, Yang Q, ... Ye Z (2019). The tomato WV gene encoding a thioredoxin protein is essential for chloroplast development at low temperature and high light intensity. BMC Plant Biology 19(1):1-14. https://doi.org/10.1186/s12870-019-1829-4

Gao TM, Wei SL, Chen J, Wu Y, Li F, Wei LB, ... Zhang HY (2020). Cytological, genetic, and proteomic analysis of a sesame (Sesamum indicum L.) mutant Siyl-1 with yellow-green leaf color. Genes & Genomics 42(1):25-39. https://doi.org/10.1007/s13258-019-00876-w

Gong X, Jiang Q, Xu J, Zhang J, Teng S, Lin D, Dong Y (2013). Disruption of the rice plastid ribosomal protein S20 leads to chloroplast developmental defects and seedling lethality. G3: Genes, Genomes, Genetics 3(10):1769-1777. https://doi.org/10.1534/g3.113.007856

Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008). Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53(5):814-827. https://doi.org/10.1111/j.1365-313X.2007.03373.x

Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. The Plant Cell 23(4):1512-1522. https://doi.org/10.1105/tpc.111.084525

Gu C, Liao L, Zhou H, Wang L, Deng X, Han Y (2015). Constitutive activation of an anthocyanin regulatory gene PcMYB10. 6 is related to red coloration in purple-foliage plum. PloS One 10(8):e0135159. https://doi.org/10.1371/journal.pone.0135159

Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, Chen ZJ (2014). miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nature Communications 5(1):1-14. https://doi.org/10.1038/ncomms4050

Guevara-García A, San Román C, Arroyo A, Cortés ME, Gutiérrez-Nava MDL, León P (2005). Characterization of the Arabidopsis clb6 mutant illustrates the importance of posttranscriptional regulation of the methyl-D-erythritol 4-phosphate pathway. The Plant Cell 17(2):628-643.

Guo CY, Wu GH, Xing J, Li WQ, Tang DZ, Cui BM (2013). A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Reports 32(5):687-702. https://doi.org/10.1007/s00299-013-1403-8

Gutiérrez-Nava ML, Gillmor CS, Jiménez LF, Guevara-García A, León P (2004). CHLOROPLAST BIOGENESIS genes act cell and noncell autonomously in early chloroplast development. Plant Physiology 135:471-482. https://doi.org/10.1104/pp.103.036996

Hansson A, Willows RD, Roberts TH, Hansson M (2002). Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proceedings of the National Academy of Sciences 99(21):13944-13949. https://doi.org/10.1073/pnas.212504499

Hayashi-Tsugane M, Takahara H, Ahmed N, Himi E, Takagi K, Iida S, ... Maekawa M (2014). A mutable albino allele in rice reveals that formation of thylakoid membranes requires the SNOW-WHITE LEAF1 gene. Plant and Cell Physiology 55(1):3-15. https://doi.org/10.1093/pcp/pct149

He L, Tang R, Shi X, Wang W, Cao Q, Liu X, ... Jia X (2019). Uncovering anthocyanin biosynthesis related microRNAs and their target genes by small RNA and degradome sequencing in tuberous roots of sweet potato. BMC Plant Biology 19(1):232. https://doi.org/10.1186/s12870-019-1790-2

He L, Zhang S, Qiu Z, Zhao J, Nie W, Lin H, ... Zhu L (2018). FRUCTOKINASE‐LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice. Journal of Integrative Plant Biology 60(2):94-111. https://doi.org/10.1111/jipb.12631

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A (2009). Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. Journal of Biological Chemistry 284(26):17449-17456. https://doi.org/10.1074/jbc.M109.008912

Hou DY, Xu H, Du GY, Lin JT, Duan M, Guo AG (2009). Proteome analysis of chloroplast proteins in stage albinism line of winter wheat (Triticum aestivum) FA85. BMB Reports 42(7):450-455. https://doi.org/10.5483/bmbrep.2009.42.7.450

Hsieh MH, Chang CY, Hsu SJ, Chen JJ (2008). Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Molecular Biology 66(6):663-673. https://doi.org/10.1007/s11103-008-9297-5

Hsieh MH, Goodman HM (2006). Functional evidence for the involvement of Arabidopsis IspF homolog in the non mevalonate pathway of plastid isoprenoid biosynthesis. Planta 223(4):779-784. https://doi.org/10.1007/s00425-005-0140-9

Hu HZ, Zhang R, Shang AQ, Zhao LJ, Lu ZM (2007). Response of pigment content of golden-leaf plants to light intensity. Acta Horticulturae Sinica 34(3):717.

Huang QN, Shi YF, Yang Y, Feng BH, Wei YL, Chen J, ... Wu JL (2011). Characterization and genetic analysis of a light‐and temperature‐sensitive spotted‐leaf mutant in rice. Journal of Integrative Plant Biology 53(8):671-681. https://doi.org/10.1111/j.1744-7909.2011.01056.x

Huang R, Wang Y, Wang P, Li C, Xiao F, Chen N, ... Chen R (2018). A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice. Plant Molecular Biology 96:5-16. https://doi.org/10.1007/s11103-017-0668-7

Ishikawa A, Okamoto H, Iwasaki Y, Asahi T (2001). A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. The Plant Journal 27(2):89-99. https://doi.org/10.1046/j.1365-313x.2001.01058.x

Jeyaraj A, Zhang X, Hou Y, Shangguan M, Gajjeraman P, Li Y, Wei C (2017). Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences. BMC Plant Biology 17(1):1-16. https://doi.org/10.1186/s12870-017-1169-1

Jiang L, Tian X, Fu Y, Liao X, Wang G, Chen F (2018). Comparative profiling of microRNAs and their effects on abiotic stress in wild-type and dark green leaf color mutant plants of Anthurium andraeanum ‘Sonate’. Plant Physiology and Biochemistry 132:258-270. https://doi.org/10.1016/j.plaphy.2018.09.008

Jiang L, Shen X, Shoji T, Kanda T, Zhou J, Zhao L (2013). Characterization and activity of anthocyanins in Zijuan tea (Camellia sinensis var. kitamura). Journal of Agricultural and Food Chemistry 61(13):3306-3310. https://doi.org/10.1021/jf304860u

Jiang Y, He Y, Fan SL, Yu JN, Song MZ (2011). The identification and analysis of RNA editing sites of 10 chloroplast protein-coding genes from virescent mutant of Gossypium hirsutum. Cotton Science 23(1):3-9.

Jin SW, Rahim MA, Afrin KS, Park JI, Kang JG, Nou IS (2018). Transcriptome profiling of two contrasting ornamental cabbage (Brassica oleracea var. acephala) lines provides insights into purple and white inner leaf pigmentation. BMC Genomics 19(1):797. https://doi.org/10.1186/s12864-018-5199-3

Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, ... An G (2003). Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant and Cell Physiology 44(5):463-472. https://doi.org/10.1093/pcp/pcg064

Kim J, Park JH, Lim CJ, Lim JY, Ryu JY, Lee BW, ... Kim D (2012). Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars. BMC Genomics 13(1):657. https://doi.org/10.1186/1471-2164-13-657

Kim J, Lee WJ, Vu TT, Jeong CY, Hong SW, Lee H (2017). High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. Plant Cell Reports 36(8):1215-1224. https://doi.org/10.1007/s00299-017-2147-7

Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keränen M, ... Masuda T (2012). Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. The Plant Cell 24(3):1081-1095. https://doi.org/10.1105/tpc.111.092254

Kobayashi K, Sasaki D, Noguchi K, Fujinuma D, Komatsu H, Kobayashi M, ... Wada H (2013). Photosynthesis of root chloroplasts developed in Arabidopsis lines overexpressing GOLDEN2-LIKE transcription factors. Plant and Cell Physiology 54(8):1365-1377. https://doi.org/10.1093/pcp/pct086

Kumar AM, Söll D (2000). Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis. Plant Physiology 122(1):49-56. https://doi.org/10.1104/pp.122.1.49

Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011). A plastid protein NUS1 is essential for build‐up of the genetic system for early chloroplast development under cold stress conditions. The Plant Journal 68(6):1039-1050. https://doi.org/10.1111/j.1365-313X.2011.04755.x

La RN, Rascio N, Oster U, Rüdiger W (2007). Inhibition of lycopene cyclase results in accumulation of chlorophyll precursors. Planta 225(4):1019-1029. https://doi.org/10.1007/s00425-006-0409-7

Lai YS, Li S, Tang Q, Li HX, Chen SX, Li PW, ... Guo X (2016). The dark-purple tea cultivar ‘Ziyan’ accumulates a large amount of delphinidin-related anthocyanins. Journal of Agricultural and Food Chemistry 64(13):2719-2726. https://doi.org/10.1021/acs.jafc.5b04036

Laurent GS, Wahlestedt C, Kapranov P (2015). The Landscape of long noncoding RNA classification. Trends in Genetics 31(5):239-251. https://doi.org/10.1016/j.tig.2015.03.007

Lee S, Kim JH, Yoo ES, Lee CH, Hirochika H, An G (2005). Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology 57(6):805-818. https://doi.org/10.1007/s11103-005-2066-9

Li CF, Ma JQ, Huang DJ, Ma CL, Jin JQ, Yao MZ, Chen L (2018b). Comprehensive dissection of metabolic changes in albino and green tea cultivars. Journal of Agricultural and Food Chemistry 66(8):2040-2048. https://doi.org/10.1021/acs.jafc.7b05623

Li D, Shao F, Lu S (2015). Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta 241(5):1131-1143. https://doi.org/10.1007/s00425-015-2246-z

Li NN, Lu JL, Li QS, Zheng XQ, Wang XC, Wang L, ... Yang YJ (2019a). Dissection of chemical composition and associated gene expression in the pigment-deficient tea cultivar ‘Xiaoxueya’ reveals an albino phenotype and metabolite formation. Frontiers in Plant Science 10:1543. https://doi.org/10.3389/fpls.2019.01543

Li Q, Zhu FY, Gao X, Sun Y, Li S, Tao Y, ... Liu H (2014). Young leaf chlorosis 2 encodes the stroma-localized heme oxygenase 2 which is required for normal tetrapyrrole biosynthesis in rice. Planta 240(4):701-712. https://doi.org/10.1007/s00425-014-2116-0

Li R, Fu D, Zhu B, Luo Y, Zhu H (2018c). CRISPR/Cas9‐mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. The Plant Journal 94(3):513-524. https://doi.org/10.1111/tpj.13872

Li WX, Yang SB, Lu Z, He ZC, Ye YL, Zhao BB, ... Jin B (2018a). Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Horticulture Research 5(1):1-14. https://doi.org/10.1038/s41438-018-0015-4

Li Y, Cui W, Wang R, Lin M, Zhong Y, Sun L, ... Fang J (2019b). MicroRNA858-mediated regulation of anthocyanin biosynthesis in kiwifruit (Actinidia arguta) based on small RNA sequencing. Plos One 14(5):e0217480. https://doi.org/10.1371/journal.pone.0217480

Li Y, Zhang Z, Wang P, Ma L, Li L, Yang R, ... Wang Q (2015). Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes & Genomics 37(10):851-863. https;//doi.org/10.1007/s13258-015-0317-y

Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, ... Dong Y (2015). Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant Biology 17(3):599-607. https://doi.org/10.1111/plb.12271

Linley PJ, Landsberger M, Kohchi T, Cooper JB, Terry MJ (2006). The molecular basis of heme oxygenase deficiency in the pcd1 mutant of pea. The FEBS Journal 273(12):2594-2606. https://doi.org/10.1111/j.1742-4658.2006.05264.x

Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, ... Chua NH (2012a). Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. The Plant Cell 24(11):4333-4345. https://doi.org/10.1105/tpc.112.102855

Liu M, Wang Y, Nie Z, Gai J, Bhat JA, Kong J, Zhao T (2020). Double mutation of two homologous genes YL1 and YL2 results in a leaf yellowing phenotype in soybean [Glycine max (L.) Merr]. Plant Molecular Biology 1-17.

Liu R, Dong X, Gu W, Yu L, Jin W, Qu Y, ... Li W (2016b). Variation in the phenotypic features and transcripts of thermo-sensitive leaf-color mutant induced by carbon ion beam in Green wandering jew (Tradescantia fluminensis). Scientia Horticulturae 213:303-313. https://doi.org/10.7717/peerj.7261

Liu R, Lai B, Hu B, Qin Y, Hu G, Zhao J (2017). Identification of microRNAs and their target genes related to the accumulation of anthocyanins in Litchi chinensis by high-throughput sequencing and degradome analysis. Frontiers in Plant Science 7:2059. https://doi.org/10.3389/fpls.2016.02059

Liu S, Sun Z, Xu M (2018). Identification and characterization of long non-coding RNAs involved in the formation and development of poplar adventitious roots. Industrial Crops and Products 118:334-346. https://doi.org/10.1016/j.indcrop.2018.03.071

Liu X, Yu W, Wang G, Cao F, Cai J, Wang H (2016a). Comparative proteomic and physiological analysis reveals the variation mechanisms of leaf coloration and carbon fixation in a Xantha mutant of Ginkgo biloba L. International Journal of Molecular Sciences 17(11):1794. https://doi.org/10.3390/ijms17111794

Liu XG, Xu H, Zhang JY, Liang GW, Liu YT, Guo AG (2012b). Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85. Physiologia Plantarum 145(3):384-394. https://doi.org/10.1111/j.1399-3054.2012.01604.x

Lois LM, Rodríguez‐Concepción M, Gallego F, Campos N, Boronat A (2000). Carotenoid biosynthesis during tomato fruit development: regulatory role of 1‐deoxy‐D‐xylulose 5‐phosphate synthase. The Plant Journal 22(6):503-513. https://doi.org/10.1046/j.1365-313x.2000.00764.x

Lv Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, ... Zhao H (2016). Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.). BMC Genomics 17(1):1-15. https://doi.org/10.1186/s12864-016-2650-1

Ma X, Sun X, Li C, Huan R, Sun C, Wang Y, ... Zhang K (2017). Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiology and Biochemistry 111:1-9. https://doi.org/10.1016/j.plaphy.2016.11.007

Ma Z, Dooner HK (2004). A mutation in the nuclear‐encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. The Plant Journal 37(1):92-103. https://doi.org/10.1046/j.1365-313x.2003.01942.x

Mandel MA, Feldmann KA, Herrera‐Estrella L, Rocha‐Sosa M, León P (1996). CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. The Plant Journal 9(5):649-658. https://doi.org/10.1046/j.1365-313x.1996.9050649.x

Maple J, Møller SG (2007). Plastid division: evolution, mechanism and complexity. Annals of Botany 99(4):565-579. https://doi.org/10.1093/aob/mcl249

Martens S, Preuß A, Matern U (2010). Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochemistry 71(10):1040-1049. https://doi.org/10.1016/j.phytochem.2010.04.016

Meier S, Tzfadia O, Vallabhaneni R, Gehring C, Wurtzel ET (2011). A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. BMC Systems Biology 5(1):77. https://doi.org/10.1186/1752-0509-5-77

Meng X, Zhang P, Chen Q, Wang J, Chen M (2018). Identification and characterization of ncRNA-associated ceRNA networks in Arabidopsis leaf development. BMC Genomics 19(1):607. https://doi.org/10.1186/s12864-018-4993-2

Mol J, Grotewold E, Koes R (1998). How genes paint flowers and seeds. Trends in Plant Science 3(6):212-217. https://doi.org/10.1016/S1360-1385(98)01242-4

Murakami PF, Schaberg PG, Shane JB (2008). Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn. Tree Physiology 28(10):1467-1473. https://doi.org/10.1093/treephys/28.10.1467

Nguyen CV, Vrebalov JT, Gapper NE, Zheng Y, Zhong S, Fei Z, Giovannoni JJ (2014). Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. The Plant Cell 26(2):585-601. https://doi.org/10.1105/tpc.113.118794

Osteryoung KW, Nunnari J (2003). The division of endosymbiotic organelles. Science 302(5651):1698-1704. https://doi.org/10.1126/science.1082192

Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, ... Jeon JS (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. The Plant Cell 19(5):1649-1664. https://doi.org/10.1105/tpc.106.044891

Pasini L, Bruschini S, Bertoli A, Mazza R, Fracheboud Y, Marocco A (2005). Photosynthetic performance of cold‐sensitive mutants of maize at low temperature. Physiologia Plantarum 124(3):362-370. https://doi.org/10.3929/ethz-a-005794605

Phillips MA, León P, Boronat A, Rodríguez-Concepción M (2008). The plastidial MEP pathway: unified nomenclature and resources. Trends in Plant Science 13(12):619-623. https://doi.org/10.1016/j.tplants.2008.09.003

Powell AL, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, ... Lopez-Baltazar J (2012). Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336(6089):1711-1715. https://doi.org/10.1126/science.1222218

Qin D, Dong J, Xu F, Guo G, Ge S, Xu Q, ... Li M (2015). Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genomics 16(1):1-14. https://doi.org/10.1186/s12864-015-2015-1

Qiu Z, Chen D, He L, Zhang S, Yang Z, Zhang Y, ... Zhu L (2018). The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. Rice 11(1):1-12. https://doi.org/10.1186/s12284-018-0233-2

Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, ... Kuai B (2007). Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiology 144(3):1429-1441. https://doi.org/10.1104/pp.107.100172

Ren G, Zhou Q, Wu S, Zhang Y, Zhang L, Huang J, ... Kuai B (2010). Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. Journal of Integrative Plant Biology 52(5):496-504. https://doi.org/10.1111/j.1744-7909.2010.00945.x

Roberts DJ, Werner DJ, Wadl PA, Trigiano RN (2015). Inheritance and allelism of morphological traits in eastern redbud (Cercis canadensis L.). Horticulture Research 2(1):1-11. https://doi.org/10.1038/hortres.2015.49

Rogalski M, Ruf S, Bock R (2006). Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Research 34(16):4537-4545. https://doi.org/10.1093/nar/gkl634

Rong W, Wang X, Wang X, Massart S, Zhang Z (2018). Molecular and ultrastructural mechanisms underlying yellow dwarf symptom formation in wheat after infection of Barley Yellow Dwarf Virus. International Journal of Molecular Sciences 19(4):1187. https://doi.org/10.3390/ijms19041187

Rossini L, Cribb L, Martin DJ, Langdale JA (2001). The maize golden2 gene defines a novel class of transcriptional regulators in plants. The Plant Cell 13(5):1231-1244. https://doi.org/10.1105/tpc.13.5.1231

Sacchettini JC, Poulter CD (1997). Creating isoprenoid diversity. Science 277(5333):1788-1789. https://doi.org/10.1126/science.277.5333.1788

Samad AFA, Rahnamaie-Tajadod R, Sajad M, Jani J, Murad AMA, Noor NM, Ismail I (2019). Regulation of terpenoid biosynthesis by miRNA in Persicaria minor induced by Fusarium oxysporum. BMC Genomics 20(1):586. https://doi.org/10.1186/s12864-019-5954-0

Schaberg PG, Van-den-Berg AK, Murakami PF, Shane JB, Donnelly JR (2003). Factors influencing red expression in autumn foliage of sugar maple trees. Tree Physiology 23(5):325-333. https://doi.org/10.1093/treephys/23.5.325

Schultes NP, Sawers RJ, Brutnell TP, Krueger RW (2000). Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. The Plant Journal 21(4):317-327.

Shi D, Zheng X, Li L, Lin W, Xie W, Yang J, ... Jin W (2013). Chlorophyll deficiency in the maize elongated mesocotyl2 mutant is caused by a defective heme oxygenase and delaying grana stacking. PLoS One 8(11):e80107. https://doi.org/10.1371/journal.pone.0080107

Shi JY, Zou XB, Zhao JW, Mel H, Wang KL, Wang X, Chen H (2012). Determination of total flavonoids content in fresh Ginkgo biloba leaf with different colors using near infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 94:271-276. https://doi.org/10.1016/j.saa.2012.03.078

Shimada H, Koizumi M, Kuroki K, Mochizuki M, Fujimoto H, Ohta H, ... Takamiya KI (2004). ARC3, a chloroplast division factor, is a chimera of prokaryotic FtsZ and part of eukaryotic phosphatidylinositol-4-phosphate 5-kinase. Plant and Cell Physiology 45(8):960-967. https://doi.org/10.1093/pcp/pch130

Shin D, Lee S, Kim TH, Lee JH, Park J, Lee J, ... Park JH (2020). Natural variations at the Stay-Green gene promoter control lifespan and yield in rice cultivars. Nature Communications 11(1):1-11. https://doi.org/10.1038/s41467-020-16573-2

Song J, Wei X, Shao G, Sheng Z, Chen D, Liu C, ... Hu P (2014). The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Molecular Biology 84(3):301-314. https://doi.org/10.1007/s11103-013-0134-0

Su N, Hu ML, Wu DX, Wu FQ, Fei GL, Lan Y, ... Cheng ZJ (2012). Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiology 159(1):227-238. https://doi.org/10.1104/pp.112.195081

Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K (2007). The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. The Plant Journal 52(3):512-527. https://doi.org/10.1111/j.1365-313x.2007.03251.x

Sun XQ, Wang B, Xiao YH, Wan CM, Deng XJ, Wang PD (2011). Genetic analysis and fine mapping of gene ygl98 for yellow-green leaf of rice. Acta Agronomica Sinica 37(6):991-997.

Stern DB, Hanson MR, Barkan A (2004). Genetics and genomics of chloroplast biogenesis: maize as a model system. Trends in Plant Science 9(6):293-301. https://doi.org/10.1016/j.tplants.2004.04.001

Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014). Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. The Plant Cell 26(4):1792-1807. https://doi.org/10.1105/tpc.114.123851

Tanaka Y, Sasaki N, Ohmiya A (2008). Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54(4):733-749. https://doi.org/10.1111/j.1365-313X.2008.03447.x

Terry MJ, Kendrick RE (1999). Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore-deficient aurea andyellow-green-2 mutants of tomato. Plant Physiology 119(1):143-152. https://doi.org/10.1104/pp.119.1.143

Tian X, Ling Y, Fang L, Du P, Sang X, Zhao F, ... He G (2013). Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes & Genomics 35(1):87-93. https://doi.org/10.1007/s13258-013-0069-5

Tiller N, Bock R (2014). The translational apparatus of plastids and its role in plant development. Molecular Plant 7(7):1105-1120. https://doi.org/10.1093/mp/ssu022

Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima JI, Awazuhara M, ... Noji M (2005). Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over‐expressing an MYB transcription factor. The Plant Journal 42(2):218-235. https://doi.org/10.1111/j.1365-313X.2005.02371.x

Vitha S, Froehlich JE, Koksharova O, Pyke KA, Van EH, Osteryoung KW (2003). ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. The Plant Cell 15(8):1918-1933.

Wan C, Li C, Ma X, Wang Y, Sun C, Huang R, ... Zhu J (2015). GRY79 encoding a putative metallo-β-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice. Plant Cell Reports 34(8):1353-1363. https://doi.org/10.1007/s00299-015-1792-y

Wang F, Kong W, Wong G, Fu L, Peng R, Li Z, Yao Q (2016a). AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics 291(4):1545-1559. https://doi.org/10.1007/s00438-016-1203-2

Wang JW, Czech B, Weigel D (2009b). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138(4):738-749. https;//doi.org/10.1016/j.cell.2009.06.014

Wang L, Yue C, Cao H, Zhou Y, Zeng J, Yang Y, Wang X (2014). Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biology 14(1):1-13. https://doi.org/10.1186/s12870-014-0352-x

Wang Y, Wang C, Zheng M, Lyu J, Xu Y, Li X, ... Terzaghi W (2016a). WHITE PANICLE1, a Val-tRNA synthetase regulating chloroplast ribosome biogenesis in rice, is essential for early chloroplast development. Plant Physiology 170(4):2110-2123. https://doi.org/10.1104/pp.15.01949

Wang M, Wang Q, Zhang B (2013b). Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene 530(1):26-32. https://doi.org/10.1016/j.gene.2013.08.009

Wang N, Liu Z, Zhang Y, Li C, Feng H (2018b). Identification and fine mapping of a stay-green gene (Brnye1) in pakchoi (Brassica campestris L. ssp. chinensis). Theoretical and Applied Genetics 131(3):673-684. https://doi.org/10.1007/s00122-017-3028-8

Wang P, Gao J, Wan C, Zhang F, Xu Z, Huang X, ... Deng X (2010). Divinyl chlorophyll (ide) a can be converted to monovinyl chlorophyll (ide) a by a divinyl reductase in rice. Plant Physiology 153(3):994-1003. https://doi.org/10.1104/pp.110.158477

Wang P, Fouracre J, Kelly S, Karki S, Gowik U, Aubry S, ... Hibberd JM (2013a). Evolution of GOLDEN2-LIKE gene function in C3 and C4 plants. Planta 237(2):481-495. https://doi.org/10.1007/s00425-012-1754-3

Wang Q, Sang X, Ling Y, Zhao F, Yang Z, Li Y, He G (2009a). Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). Journal of Genetics and Genomics 36(11):679-684. https://doi.org/10.1016/S1673-8527(08)60160-5

Wang SA, Wang P, Gao L, Yang R, Li L, Zhang E, ... Yin Z (2017b). Characterization and complementation of a chlorophyll-less dominant mutant GL1 in Lagerstroemia indica. DNA and Cell Biology 36(5):354-366. https://doi.org/10.1089/dna.2016.3573

Wang WJ, Zheng KL, Gong XD, Xu JL, Huang JR, Lin DZ, Dong YJ (2017a). The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. Plant Science 259:1-11. https://doi.org/10.1016/j.plantsci.2017.02.007

Wang Y, Liu S, Tian X, Fu Y, Jiang X, Li Y, Wang G (2018a). Influence of light intensity on chloroplast development and pigment accumulation in the wild-type and etiolated mutant plants of Anthurium andraeanum ‘Sonate’. Plant Signaling & Behavior 13(8):e1482174. https://doi.org/10.1080/15592324.2018.1482174

Wang Y, Wang Y, Song Z, Zhang H (2016b). Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis. Molecular Plant 9(10):1395-1405. https://doi.org/10.1016/j.molp.2016.07.003

Waters MT, Langdale JA (2009). The making of a chloroplast. The EMBO Journal 28(19):2861-2873. https://doi.org/10.1038/emboj.2009.264

Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009). GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. The Plant Cell 21(4):1109-1128. https://doi.org/10.1105/tpc.108.065250

Wei K, Wang L, Zhang Y, Ruan L, Li H, Wu L, ... Edwards R (2019). A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97(5):825-840. https://doi.org/10.1111/tpj.14161

Wei K, Zhang Y, Wu L, Li H, Ruan L, Bai P, ... Cheng H (2016). Gene expression analysis of bud and leaf color in tea. Plant Physiology and Biochemistry 107:310-318. https://doi.org/10.1016/j.plaphy.2016.06.022

Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE (1996). The phytochrome-deficient pcd1 mutant of pea is unable to convert Heme to Biliverdin IX [alpha]. The Plant Cell 8(1):55-67. https://doi.org/10.1105/tpc.8.1.55

Wu HJ, Wang ZM, Wang M, Wang XJ (2013). Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiology 161(4):1875-1884. https://doi.org/10.1104/pp.113.215962

Wu Y, Guo J, Wang T, Cao F, Wang G (2019). Transcriptional profiling of long noncoding RNAs associated with leaf-color mutation in Ginkgo biloba L. BMC Plant Biology 19(1):1-13. https://doi.org/10.1186/s12870-019-2141-z

Wu Y, Li X, Wang T, Guo J, Cao F, Wang G (2020). Ginkgo biloba microRNA profiling reveals new insight into leaf color mutation. Scientia Horticulturae 265:109189. https://doi.org/10.1016/j.scienta.2020.109189

Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, ... Wang C (2007). A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiology 145(1):29-40. https://doi.org/10.1104/pp.107.100321

Xia R, Zhu H, An YQ, Beers EP, Liu Z (2012). Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology 13(6):R47. https://doi.org/10.1186/gb-2012-13-6-r47

Xie F, Yuan JL, Li YX, Wang CJ, Tang HY, Xia JH, ... Wan ZJ (2018). Transcriptome analysis reveals candidate genes associated with leaf etiolation of a cytoplasmic male sterility line in Chinese cabbage (Brassica rapa L. ssp. pekinensis). International Journal of Molecular Sciences 19(4):922. https://doi.org/10.3390/ijms19040922

Xie Y, Xu D, Cui W, Shen W (2012). Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. Journal of Experimental Botany 63(10):3869-3883. https://doi.org/10.1093/jxb/ers078

Xing S, Miao J, Li S, Qin G, Tang S, Li H, ... Qu LJ (2010). Disruption of the 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Research 20(6):688-700. https://doi.org/10.1038/cr.2010.54

Xu B, Xin W, Wang G, Guo W, Wen F, Jin J (2006). Characteristics of chimeras of Anthurium andraeanum from in vitro mutation. Chinese Bulletin of Botany 23(6):698-702.

Xu S, Wang L, Zhang B, Han B, Xie Y, Yang J, ... Cui W (2012). RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Molecular Biology 80(2):219-235.

Yan J, Qian L, Zhu W, Qiu J, Lu Q, Wang X, ... Huang Y (2020). Integrated analysis of the transcriptome and metabolome of purple and green leaves of Tetrastigma hemsleyanum reveals gene expression patterns involved in anthocyanin biosynthesis. PloS One 15(3):e0230154. https://doi.org/10.1371/journal.pone.0230154

Yang Y, Chen X, Xu B, Li Y, Ma Y, Wang G (2015). Phenotype and transcriptome analysis reveal chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’. Frontiers in Plant Science 6:139. https://doi.org/10.3389/fpls.2015.00139

Ye J, Zhang X, Tan J, Xu F, Cheng S, Chen Z, ... Liao Y (2020). Global identification of Ginkgo biloba microRNAs and insight into their role in metabolism regulatory network of terpene trilactones by high-throughput sequencing and degradome analysis. Industrial Crops and Products 148:112289.

Yoo SC, Cho SH, Sugimoto H, Li J, Kusumi K, Koh HJ, ... Paek NC (2009). Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiology 150(1):388-401. https://doi.org/10.1104/pp.109.136648

You MK, Lee YJ, Kim JK, Baek SA, Jeon YA, Lim SH, Ha SH (2020). The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds. BMC Plant Biology 20:1-16. https://doi.org/10.1186/s12870-020-02357-9

Yuan M, Yuan S, Zhang ZW, Xu F, Chen YE, Du JB, Lin HH (2010). Putative mutation mechanism and light responses of a protochlorophyllide oxidoreductase-less barley mutant NYB. Plant and Cell Physiology 51(8):1361-1371. https://doi.org/10.1093/pcp/pcq097

Zhang G, Chen D, Zhang T, Duan A, Zhang J, He C (2018). Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Research 25(5):465-476. https://doi.org/10.1093/dnares/dsy017

Zhang H, Liu L, Cai M, Zhu S, Zhao J, Zheng T, ... Chen S (2015). A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in rice. Plant Molecular Biology Reporter 33(6):1975-1987. https://doi.org/10.1007/s11105-015-0889-3

Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, ... Paek NC (2006). Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology 62(3):325-337. https://doi.org/10.1007/s11103-006-9024-z

Zhang J, Yuan H, Yang Y, Fish T, Lyi SM, Thannhauser TW, ... Li L (2016). Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis. Journal of Experimental Botany 67(9):2731-2744. https://doi.org/10.1093/jxb/erw106

Zhang K, Liu Z, Shan X, Li C, Tang X, Chi M, Feng H (2017a). Physiological properties and chlorophyll biosynthesis in a Pak-choi (Brassica rapa L. ssp. chinensis) yellow leaf mutant, pylm. Acta Physiologiae Plantarum 39(1):22.

Zhang K, Mu Y, Li W, Shan X, Wang N, Feng H (2020). Identification of two recessive etiolation genes (py1, py2) in pakchoi (Brassica rapa L. ssp. chinensis). BMC Plant Biology 20(1):1-14. https://doi.org/10.1186/s12870-020-2271-3

Zhang L, Zhang X, Wang X, Xu J, Wang M, Li L, ... Yan J (2019). Seed carotenoid deficient functions in isoprenoid biosynthesis via the plastid MEP pathway. Plant Physiology 179(4):1723-1738. https://doi.org/10.1104/pp.18.01148

Zhang S, Zuo L, Zhang J, Chen P, Wang J, Yang M (2017b). Transcriptome analysis of Ulmus pumila ‘Jinye’ responses to different shading involved in chlorophyll metabolism. Tree Genetics & Genomes 13(3):64.

Zhao D, Wei M, Shi M, Hao Z, Tao J (2017). Identification and comparative profiling of miRNAs in herbaceous peony (Paeonia lactiflora Pall.) with red/yellow bicoloured flowers. Scientific Reports 7:44926. https://doi.org/10.1038/srep44926

Zhao DS, Zhang CQ, Li QF, Yang QQ, Gu MH, Liu QQ (2016). A residue substitution in the plastid ribosomal protein L12/AL1 produces defective plastid ribosome and causes early seedling lethality in rice. Plant Molecular Biology 91(1-2):161-17. https://doi.org/10.1007/s11103-016-0453-z

Zhou S, Hu Z, Zhu M, Zhang B, Deng L, Pan Y, Chen G (2013c). Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named ‘White Dove’. Plant Growth Regulation 71(3):281-294. https://doi.org/10.1007/s10725-013-9829-0

Zhu X, Guo S, Wang Z, Du Q, Xing Y, Zhang T, ... He G (2016). Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biology 16(1):134. https://doi.org/10.1186/s12870-016-0821-5

Zhou XW, Fan ZQ, Chen Y, Zhu YL, Li JY, Yin H F (2013a). Functional analyses of a flavonol synthase–like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation. Journal of Biosciences 38(3):593-604.

Zhou Y, Gong Z, Yang Z, Yuan Y, Zhu J, Wang M, ... Xu T (2013b). Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice. PLoS One 8(9):e75299. https://doi.org/10.1371/journal.pone.0075299

Published
2021-06-18
How to Cite
FU, M., CHENG, S., XU, F., CHEN, Z., LIU, Z., ZHANG, W., ZHENG, J., & WANG, L. (2021). Advance in mechanism of plant leaf colour mutation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(2), 12071. https://doi.org/10.15835/nbha49212071
Section
Review Articles
CITATION
DOI: 10.15835/nbha49212071