Chlorophyll fluorescence and its relationship with physiological stress in Chenopodium quinoa Willd.

  • Miguel GARCIA-PARRA Universidad del Cauca, Facultad de Ciencias Agrarias, Departamento de Ciencias Agropecuarias, Popayán
  • Roman STECHAUNER-ROHRINGER Universidad del Cauca, Facultad de Ciencias Agrarias, Departamento de Ciencias Agropecuarias, Popayán
  • Diego ROA-ACOSTA Universidad del Cauca, Facultad de Ciencias Agrarias, Departamento de Agroindustria, Popayán
  • Daniel ORTIZ-GONZÁLEZ Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Área de fisiología vegetal y cultivos, Palmira
  • Jorge RAMIREZ-CORREA Universidad del Cauca, Facultad de Ciencias Agrarias, Departamento de Ciencias Agropecuarias, Popayán
  • Nubia PLAZAS-LEGUIZAMÓN Fundación Universitaria Juan de Castellanos, Facultad de Ciencias Agrarias y Ambientales, Tunja
  • Andres COLMENARES-CRUZ Universidad Nacional Abierta y a Distancia UNAD, Escuela de Ciencias Ambientales Pecuarias y del Medio Ambiente, Tunja
Keywords: photosystem II; quinoa; quantum efficiency; reactive oxygen species; stress tolerance

Abstract

Photosynthetic activity is a fundamental process in the physiology of plants, and its regulation plays an important role in determining the effect of abiotic factors. Quinoa is a plant species of agronomic and nutritional interest that has been recognized for its adaptability to extreme environmental conditions, however, climate change may result in unfavorable conditions capable of affecting the natural development of this species, which is of great interest culture and research in South America. To evaluate the response of quinoa to stress, techniques could be used that quantify the loss of light energy through its dissipation in the form of heat. However, the measurement of chlorophyll fluorescence is the most widely used and accessible technique for field research, which allows to recognize the relationships between the plant and agroclimatic factors. This review summarizes the physiological effects of heat, radiation, salinity, and nutrient and water availability, as well as their possible interactions on quinoa.

Metrics

Metrics Loading ...

References

Adhikari ND, Simko I, Mou B (2019). Phenomic and physiological analysis of salinity effects on lettuce. Sensors 19(21):4814. https://doi.org/10.3390/s19214814

Adolf VI, Shabala S, Andersen MN, Razzaghi F, Jacobsen S-E (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant Soil 357(1-2):117-129. https://doi.org/10.1007/s11104-012-1133-7

Ahumada A, Ortega A, Chito D, Benítez R (2016). Saponinas de quinua (Chenopodium quinoa Willd.): un subproducto con alto potencial biológico. Revista Colombiana de Ciencias Químicas Farmaceuticas 45(3):438-469. https://doi.org/10.15446/rcciquifa.v45n3.62043

Alcivar M, Zurita-Silva A, Sandoval M, Muñoz C, Schoebitz M (2018). Reclamation of saline-sodic soils with combined amendments: impact on quinoa performance and biological soil quality. Sustainability 10(9):3083. https://doi.org/10.3390/su10093083

Amjad M, Akhtar SS, Yang A, Akhtar J, Jacobsen S (2015). Antioxidative response of quinoa exposed to iso-osmotic, ionic and non-ionic salt stress. Journal of Agronomy and Crop Science 201(6):452-460. https://doi.org/10.1111/jac.12140

Bacarin MA, Deuner S, da Silva F, Cassol D, Silva DM (2012). Chlorophyll a fluorescence as indicative of the salt stress on Brassica napus L. Brazilian Society of Plant Physiology 23(4):245-253. https://doi.org/10.1590/S1677-04202011000400001

Bascuñán-Godoy L, Sanhueza C, Hernández CE, Cifuentes L, Pinto K, Álvarez R, González-Teuber M. (2018). Nitrogen supply affects photosynthesis and photoprotective attributes during drought-induced senescence in quinoa. Frontiers in Plant Science 9(994). https://doi.org/10.3389/fpls.2018.00994

Bazile D, Jacobsen S-E, Verniau A (2016). The global expansion of quinoa: trends and limits. Frontiers in Plant Science 7:1-6. https://doi.org/10.3389/fpls.2016.00622

Becker VI, Goessling JW, Duarte B, Caçador I, Liu F, Rosenqvist E, Jacobsen S-E (2017). Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa). Functional Plant Biology 44(7):665-678. https://doi.org/10.1071/fp16370

Bedoya-Perales NS, Pumi G, Mujica A, Talamini E, Padula AD (2018). Quinoa expansion in Peru and its implications for land use management. Sustainability (Switzerland) 10(2):532. https://doi.org/10.3390/su10020532

Belatik A, Hotchandani S, Carpentier R (2013). Inhibition of the water oxidizing complex of photosystem II and the reoxidation of the quinone acceptor QA by Pb2+. Plos One 137:151-155. https://doi.org/10.1371/journal.pone.0068142

Belkhodja R, Morales F, Abadia A, Cómez-Aparisi J, Abadia J (1994). Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.). Plant Physiology 104(2):667-673. https://doi.org/10.1104/pp.104.2.667

Bermúdez-Cardona MB, Américo J, Filho W, Rodrigues FÁ (2014). Leaf gas exchange and chlorophyll a fluorescence in maize leaves infected with Stenocarpella macrospora. Biochemistry and Cell Biology 105(1):26-34. https://doi.org/10.1094/PHYTO-04-14-0096-R

Bonales-Alatorre E, Shabala S, Chen Z, Pottosin I (2013). Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiology 162(2):940-952. https://doi.org/10.2307/41943275

Bosque-Sanchez H, Lemeur R, Van Damme P, Jacobsen S-E (2003). Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.). Food Reviews International 19(1-2):111-119. https://doi.org/10.1081/FRI-120018874

Bunce JA (2018). Thermal acclimation of the temperature dependence of the VCmax of Rubisco in quinoa. Photosynthetica 56(4):1171-1176. https://doi.org/10.1007/s11099-018-0799-3

Cai Z-Q, Gao Q (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology 20(1):1-15. https://doi.org/10.1186/s12870-020-2279-8

Carrasco-Ríos L (2009). Efecto de la radiación Ultravioleta-B en plantas [Effect of Ultraviolet-B radiation on plants]. IDESIA 27(3):59-76. http://dx.doi.org/10.4067/S0718-34292009000300009

Carstensen A, Herdean A, Schmidt B, Sharma A, Spetea C, Pribil M, … Husted S (2018). The impacts of phosphorus deficiency on the photosynthetic electron transport chain. Plant Physiology 177(1):271-284. https://doi.org/10.1104/pp.17.01624

Casierra-Posada F, Peña-Olmos J, Vaughan G (2013). Photochemical efficiency of photosystem II and growth in banana passionfruit plants (Passiflora tripartita (Juss.) var. mollissima (Kunt) L. H. Bailey under salt stress. Acta Agronómica 62(1):21-26.

Chen J, Burke JJ, Xin Z (2018). Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. BMC Plant Biology 12(1):1-10. https://doi.org/10.1186/s12870-018-1228-2

Eisa S, Hussin S, Geissler N, Koyro HW (2012). Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinoa Willd.) as a potential cash crop halophyte. Australian Journal of Crop Science 6(2):357-368.

Eustis A, Murphy K, Barrios-Masias F (2020). Leaf gas exchange performance of ten quinoa genotypes under a simulated heat wave. Plants 9(1)81. https://doi.org/10.3390/plants9010081

Fajardo-Rojas A (2019). Variabilidad climática y disponibilidad hídrica en los valles de Ubaté, Chiquinquira y Alto Chicamocha, Colombia [Climate variability and water availability in the valleys of Ubaté, Chiquinquira and Alto Chicamocha, Colombia.] Acta Agronómica 68(3):182-195. https://doi.org/10.15446/acag.v68n3.69082

Fghire R, Anaya F, Ali OI, Benlhabib O, Ragab R, Wahbi S (2015). Physiological and photosynthetic response of quinoa to drought stress. Chilean Journal of Agricultural Research 75(2):174-183. https://doi.org/10.4067/S0718-58392015000200006

Fonseca-López D, Quila-Vivas N, Balaguera-López HE (2020). Técnicas aplicadas en la investigación agrícola para cuantificar la fijación de nitrógeno: una revisión sistemática [Techniques applied in agricultural research to quantify nitrogen fixation: a systematic review]. Corpoica Ciencia y Tecnología Agropecuaria 21(e1342):1-19. https://doi.org/10.21930/rcta.vol21_num1_art:1342

Furbank RT, Sharwood R, Estavillo GM, Silva-Perez V, Condon A (2020). Photons to food: genetic improvement of cereal crop photosynthesis. Journal of Experimental Botany 71(7):2226-2238. https://doi.org/10.1093/jxb/eraa077

Garcia-Parra M, Roa-Acosta D, Stechauner-Rohringer R, García-Molano JF, Bazile D, Plazas-Leguizamón N (2020). Effect of temperature on the growth and development of quinoa plants (Chenopodium quinoa Willd.): A review on a global scale. Sylwan 164(5):411-433.

García-Parra M, García-Molano J, Deaquiz-Oyola Y (2019). Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyaca, Colombia. Agronomía Colombiana 37(2):144-152. https://doi.org/10.15446/agron.colomb.v37n2.76219

García-Parra M, Zurita-Silva A, Stechauner-Rohringer R, Roa-Acosta D, Jacobsen S-E (2020). Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chilean Journal of Agricultural Research 80(2):290-302. https://doi.org/10.4067/S0718-58392020000200290

González JA, Gallardo M, Hilal M, Rosa M, Prado FE (2009). Physiological responses of quinoa (Chenopodium quinoa Willd.) to drought and waterlogging stresses: dry matter partitioning. Botanical Studies 50:35-42.

Guidi L, Piccolo EL, Landi M (2019). Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to Be a C3 or C4 species? Frontiers in Plant Science 10:174. https://doi.org/10.3389/fpls.2019.00174

Hariadi Y, Marandon K, Tian Y, Jacobsen S-E, Shabala S (2011). Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany 62(1):185-193. https://doi.org/10.1093/jxb/erq257

Hilal M, Parrado F, Rosa M, Gallardo M, Orce L, Massa EM, … Prado FE (2004). Epidermal lignin deposition in quinoa cotyledons in response to UV‐B radiation. Photochemistry and Photobiology 79(2):205-2010. https://doi.org/10.1111/j.1751-1097.2004.tb00011.x

Hinojosa L, Kumar N, Gill KS, Murphy KM (2019). Spectral reflectance indices and physiological parameters in quinoa under contrasting irrigation regimes. Crop Science 59(5):1927-1944. https://doi.org/10.2135/cropsci2018.11.0711

Hinojosa L (2018). Effect of heat and drought stress in quinoa (Chenopodium quinoa Willd.). PhD Thesis. Washington State University.

Hinojosa L, González J, Barrios-Masias F, Fuentes F, Murphy K (2018). Quinoa abiotic stress responses: a review. Plants 7(4):106. https://doi.org/10.3390/plants7040106

Hinojosa L, Matanguihan JB, Murphy KM (2019). Effect of high temperature on pollen morphology, plant growth and seed yield in quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science 205(1):33-45. https://doi.org/10.1111/jac.12302

Hinojosa L, Sanad M, Jarvis D, Steel P, Murphy K, Smertenko A (2019). Impact of heat and drought stress on peroxisome proliferation in quinoa. The Plant Journal 99(6):1144-1158. https://doi.org/10.1111/tpj.14411

Hirich A, Allah-Choukr R, Jacobsen S-E (2014). Quinoa in Morocco - effect of sowing dates on development and yield. Journal of Agronomy and Crop Science 200(5):371-377. https://doi.org/10.1111/jac.12071

Huang Z-A, Juang D-A, Yang Y, Sun J-W, Jin S-H (2004). effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthesis Research 42(3):357-364.

Huarancca Reyes T, Scartazza A, Castagna A, Cosio EG, Ranieri A, Guglielminetti L (2018). Physiological effects of short acute UVB treatments in Chenopodium quinoa Willd. Scientific Reports 126(6):787-794. https://doi.org/10.1038/s41598-017-18710-2

Issa-Ali O, Fghire R, Anaya F, Benlhabib O, Wahbi S (2019). Physiological and morphological responses of two quinoa cultivars (Chenopodium quinoa Willd.) to drought stress. Gesunde Pflanzen 71(2):123-133. https://doi.org/10.1007/s10343-019-00460-y

Jacobsen S, Mujica A, Jensen CR (2006). The resistance of Quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International 19(1-2):99-109. https://doi.org/10.1081/FRI-120018872

Jamalluddin N, Massawe FJ, Symonds RC (2018). Transpiration efficiency of Amaranth (Amaranthus sp.) in response to drought stress. Journal of Horticultural Science and Biotechnology 94(4):448-459. https://doi.org/10.1080/14620316.2018.1537725

Jayme-Oiveira A, Ribeiro W, Ramos R, Ziviani M, Jakelaitis G (2017). Amaranth, quinoa, and millet growth and development under different water regimes in the Brazilian Cerrado. Pesquisa Agropecuaria Brasileira 25(1):182-187. https://doi.org/10.1590/S0100-204X2017000800001

Jin X, Yang G, Tan C, Zhao C (2015). effects of nitrogen stress on the photosynthetic CO2 assimilation, chorophyll fluorescence, and sugar-nitrogen ratio in corn. Scientific Reports 5(1):1-9. https://doi.org/10.1038/srep09311

Kalaji HM, Baba W, Gediga K, Goltsev V, Samborska I, Cetner M, … Kompala-Baba A (2018). Chorophyll fluorescence as tool for nutrient status identification in rapeseed plants. Photosynthesis Research 136(3):329-343. https://doi.org/https://doi.org/10.1007/s11120-017-0467-7

Kalaji HM, Schansker G, Ladle RJ, Goltsev V (2014). Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research 122(2):121-158. https://doi.org/10.1007/s11120-014-0024-6

Kautsky H, Hirsch A (1931). Neue Versuche zur Kohlensäureassimilation [New attempts at carbon dioxide assimilation]. Naturwissenschaften 19:964-964. https://doi.org/https://doi.org/10.1007/BF01516164

Killi D, Haworth M (2017). Diffusive and metabolic constraints to photosynthesis in quinoa during drought and salt stress. Plants 6(4):49. https://doi.org/10.3390/plants6040049

Kim Y, Shahzad R, Lee I-J (2020). Regulation of flood stress in plants. In: Plant life under changing environment. pp 157-173. https://doi.org/https://doi.org/10.1016/C2018-1-02300-8

Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Oosterhuis DM, … Palhano M (2016). Cultivars to face climate change effects on crops and weeds: a review. Agronomy for Sustainable Development 36(1):12. https://doi.org/10.1007/s13593-016-0350-5

Machado R, Serralheiro RP (2017). Soil salinity: effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30. https://doi.org/10.3390/horticulturae3020030

Mandi S (2017). Natural UV radiation in enhancing survival value and quality of plants. Springer.

Marschner P (2012). Mineral nutrition of higher plants (Third). Boston, Elsevier.

Masson-Delmotte TWV, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, ... Connors S (2018). IPCC, 2018: Summary for Policymakers. In: Global warming of 1.5 C. An IPCC Special Report on the impacts of global warming of 1.5 C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global. World Meteorological Organization, Geneva, Tech. Rep.

Maxwell K, Johnson GN (2000). Chlorophyll fluorescence - a practical guide. Journal of Experimental Botany 51(345):659-668.

Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta - Bioenergetics 1767(6):414-421. https://doi.org/10.1016/j.bbabio.2006.11.019

Murphy K, Matanguihan J (2015). quinoa improvement and sustainable production. I. Jhon Wiley & Sons (Ed.), New Jersey.

Navruz-Varli S, Sanlier N (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science 69:371-376. https://doi.org/10.1016/j.jcs.2016.05.004

Pérez-Bueno M, Pineda M, Barón M (2019). Phenotyping Plant responses to biotic stress by chlorophyll fluorescence imaging. Frontiers in Plant Science 10:1135. https://doi.org/10.3389/fpls.2019.01135

Qin L, Guo S, Ai W, Tang Y, Cheng Q, Chen G (2013). Effect of salt stress on growth and physiology in amaranth and lettuce: Implications for bioregenerative life support system. Advances in Space Research 49(10):1506-1519. https://doi.org/10.1016/j.asr.2012.09.025

Ramirez-Villegas J, Salazar M, Jarvis A, Navarro-Racines CE (2012). A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050. Climatic Change 115(3-4):611-628. https://doi.org/10.1007/s10584-012-0500-y

Roa-Acosta DF, Bravo-Gómez JE, García-Parra MA, Rodríguez-Herrera R, Solanilla-Duque JF (2020). Hyper-protein quinoa flour (Chenopodium Quinoa Wild): Monitoring and study of structural and rheological properties. LWT - Food Science and Technology 121(108952):1-7. https://doi.org/10.1016/j.lwt.2019.108952

Romero G, Heredia A, Chaparro-Zambrano H (2018). Germinative potential in quinoa (Chenopodium quinoa Willd.) seeds stored under cool conditions. Revista U.D.C.A Actualidad & Divulgación Científica 21(2):341-350.

Ruiz KB, Biondi S, Oses R, Acuña-Rodríguez IS, Antognoni F, Martinez-Mosqueira EA, … Molina-Montenegro MA (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development 34(2):349-359. https://doi.org/10.1007/s13593-013-0195-0

Sasi S, Venkatesh J, Daneshi RF, Gururani MA (2018). Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants 7(4):100. https://doi.org/10.3390/plants7040100

Shabala S, Hariadi Y, Jacobsen S-E (2013). Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology 169(16):1623-1630. https://doi.org/10.1016/j.jplph.2013.01.014

Song X, Zhou G, Ma B, Wu W, Ahmad I, Zhu G, … Jiao X. (2019). Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under. Agronomy 9(3):115. https://doi.org/10.3390/agronomy9030115

Tomás A (2015). Utilización de medida de fluorescencia de la clorofila para monitorear el estado nutricional y estimar el potencial enológico en viñedos afectados por clorosis férrica. Tesis de PhD. Universidad de Valladolid.

Tränkner M, Tavakol E, Jákli B (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum 163(3):414-431. https://doi.org/10.1111/ppl.12747

Tsai Y, Chen K, Cheng T, Lee C, Lin S, Tung C (2019). Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biology 19(1):403. https://doi.org/10.1186/s12870-019-1983-8

Vazquez-Luna A, Cortés V, Carmona F, Díaz-Sobac R (2019). Quinoa leaf as a nutritional alternative. Ciencia e Investigación Agraria 46(2):137-143. https://doi.org/10.7764/rcia.v46i2.2098

Wahid A, Gelani S, Ashraf M, Foolad MR (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany 61(3):199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011

Wang X, Wang L, Shangguan Z (2016). Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. PLoS ONE 11(11):e0165733. https://doi.org/10.1371/journal.pone.0165733

Winkel T, Méthy M, Thenot F (2002). Radiation use efficiently, cholophyll fluorescence, and reflectance indices. Photosynthetica 40(2):227-232. https://doi.org/https://doi.org/10.1023/A:1021345724248

Wu X, Tang Y, Li C, Wu C, Huang G (2015). Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science 18(3):284-294. https://doi.org/10.1626/pps.18.284

Xu Q, Ma X, Lv T, Bai M, Wang Z, Niu J (2020). Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water 12(1):289. https://doi.org/10.3390/w12010289

Yan H, Shah SS, Zhao WE, Liu F (2020). Variations in water relations, stomatal characteristics, and plant growth between quinoa and pea under salt-stress conditions. Pakistan Journal of Botany 52(1):1-7. https://doi.org/10.30848/PJB2020-1(8)

Yang A, Akhtar SS, Amjad M, Iqbal S, Jacobsen S-E (2016). Growth and physiological responses of quinoa to drought and temperature stress. Journal of Agronomy and Crop Science 202(6):445-453. https://doi.org/10.1111/jac.12167

Yano J, Yachandra V (2014). Mn4Ca Cluster in photosynthesis: where and how water is oxidized to dioxygen. Chemical Review 4205(1):4175-4205. https://doi.org/10.1021/cr4004874

Yaqoob H, Akram NA, Iftikhar S, Ashraf M, Khalid N, Sadiq M, … Ahmad P (2019). Seed pretreatment and foliar application of proline regulate morphological, physio-biochemical processes and activity of antioxidant enzymes in plants of two cultivars of quinoa (Chenopodium quinoa Willd.). Plants 8(12):588. https://doi.org/doi:10.3390/plants8120588

Zhou R, Wu Z, Wang X, Rosenqvist E, Wang Y, Zhao T, Ottosen C (2018). Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Horticulture, Environment, and Biotechnology 59(4):499-509. https://doi.org/10.1007/s13580-018-0050-y

Published
2020-12-22
How to Cite
GARCIA-PARRA, M., STECHAUNER-ROHRINGER, R., ROA-ACOSTA, D., ORTIZ-GONZÁLEZ, D., RAMIREZ-CORREA, J., PLAZAS-LEGUIZAMÓN, N., & COLMENARES-CRUZ, A. (2020). Chlorophyll fluorescence and its relationship with physiological stress in Chenopodium quinoa Willd. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1742-1755. https://doi.org/10.15835/nbha48412059
Section
Review Articles
CITATION
DOI: 10.15835/nbha48412059