Transcriptome analysis to identify genes involved in lignan, sesquiterpenoid and triterpenoid biosynthesis in medicinal plant Kadsura heteroclita

Authors

  • Xiaodong ZHANG Xuchang University, Food and Pharmacy College, College of Chemical and Materials Engineering, 88 Baiyi Road, Xuchang 461000; Lakehead University, Department of Biology, 955 Oliver Road, Thunder Bay, ON P7B5E1 (CN)
  • Caixia LI Xuchang University, Food and Pharmacy College, College of Chemical and Materials Engineering, 88 Baiyi Road, Xuchang 461000 (CN)
  • Chonlong CHIO Lakehead University, Department of Biology, 955 Oliver Road, Thunder Bay, ON P7B5E1 (CA)
  • Ayyappa K. S. KAMESHWAR Lakehead University, Department of Biology, 955 Oliver Road, Thunder Bay, ON P7B5E1 (CA)
  • Tianxiao MA Huanghe Science and Technology University, Faculty of Engineering, 666 South Zijingshan Road, Zhengzhou 450063; Lakehead University, Department of Biology, 955 Oliver Road, Thunder Bay, ON P7B5E1 (CN)
  • Wensheng QIN Lakehead University, Department of Biology, 955 Oliver Road, Thunder Bay, ON P7B5E1 (CA)

DOI:

https://doi.org/10.15835/nbha48412044

Keywords:

Kadsura heteroclita; transcriptome; lignan biosynthesis; sesquiterpenoid biosynthesis; triterpenoid biosynthesis

Abstract

Stems and roots of Kadsura plant species were the significant ingredients of traditional Chinese medicine. Kadsura heteroclita is one of the popular medicinal plants used in Tujia and Yao nationalities of China. Antioxidant compounds like lignan, sesquiterpenoid and triterpenoid are the major active components of K. hetroclita. Mass cultivation and bio-manufacturing strategies were being proposed to meet the increasing demand of Kadsura species plant parts. Therefore, it is important to reveal the molecular networks involved in biosynthesis of these highly efficient medicinal compounds. Here, transcriptomes of roots, stems and leaves in K. heteroclite seedling were sequenced by Hiseq2000 and unigenes involved in biosynthesis of lignan, sesquiterpenoid and triterpenoid biosynthesis were mined. As a result, 472 million clean reads were obtained which after aligning resulted in 160,248 transcripts and 98,005 genes. 191 and 279 unigenes were expected to be involved in biosynthesis of lignan, sesquiterpenoid and triterpenoid biosynthetic pathways respectively. Lignan, sesquiterpenoid and triterpenoid biosynthesis pathway genes were highly significant and differentially upregulated in roots and stems and downregulated in leaves. Also, genes encoding for MYB and bHLH transcription factors possibly involved in regulation of lignan, sesquiterpenoid and triterpenoid biosynthesis were discovered. These results provide the fundamental genomic resources for dissecting of biosynthetic pathways of the active components in K. hetroclita.

References

Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC (2019). A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytologist 221(1):309-325. https://doi.org/10.1111/nph.15362

Banerjee A, Sharkey T (2014). Methylerythritol 4-phosphate (MEP) pathway metabolic regulation. Natural Product Reports 31(8):1043-1055. https://doi.org/10.1039/C3NP70124G

Cao L, Li B, Shehla N, Gong L, Jian Y, Peng C, … Man R (2020). Triterpenoids from stems of Kadsura heteroclita. Fitoterapia 140:104441. https://doi.org/10.1016/j.fitote.2019.104441

Cao L, Shehla N, Li B, Jian Y, Peng C, Sheng W, … Liao D (2020). Schinortriterpenoids from Tujia ethnomedicine Xuetong - The stems of Kadsura heteroclita. Phytochemistry 169:112178. https://doi.org/10.1016/j.phytochem.2019.112178

Cao L, Shehla N, Tasneem S, Cao M, Sheng W, Jian Y, … Liao D (2019). New cadinane sesquiterpenes from the stems of Kadsura heteroclita. Molecules 24(9):1664. https://doi.org/10.3390/molecules24091664

Cechin J, Piasecki C, Benemann DP, Kremer FS, Galli V, Maia LC, Agostinetto D (2020). Transcriptome analysis identifies candidate target genes involved in glyphosate-resistance mechanism in Lolium multiflorum. Plants 9(6):685. https://doi.org/10.3390/plants9060685

Chen C, Liu S, Liu H, Liu H (2020). Candidate genes involved in the biosynthesis of lignan in Schisandra chinensis fruit based on transcriptome and metabolomes analysis. Chinese Journal of Natural Medicines 1:1-12. https://doi.org/10.3724/SP.J.1009.2019.000000

Chiang N, Wen C, Chu F (2019). TcMYB1, TcMYB4, and TcMYB8 participate in the regulation of lignan biosynthesis in Taiwania cryptomerioides Hayata. Tree Genetics & Genomes 15(5): 67. https://doi.org/10.1007/s11295-019-1375-0

Chiang NT, Ma LT, Lee YR, Tsao NW, Yang CK, Wang SY, Chu FH (2019). The gene expression and enzymatic activity of pinoresinol-lariciresinol reductase during wood formation in Taiwania cryptomerioides Hayata. Holzforschung 73(2):197-208. https://doi.org/10.1515/hf-2018-0026

Deng Y, Lu S (2017). Biosynthesis and regulation of phenylpropanoids in plants. Critical Reviews in Plant Sciences 36(4):257-290. https://doi.org/10.1080/07352689.2017.1402852

Editorial Committee of Flora of China (1996). 中国植物志 [Flora of China]. 科学出版社, 北京, 中国 30(1):238. http://www.iplant.cn/info/Kadsura%20heteroclita?t=z

Effenberger I, Zhang B, Li L, Wang Q, Liu Y, Klaiber I, … Schaller A (2015). Dirigent proteins from cotton (Gossypium sp.) for the atropselective synthesis of gossypol. Angewandte Chemie International Edition 54(49):14660-14663. https://doi.org/10.1002/anie.201507543

Fan W, Hu Q, Duan T, He B, Ye Z, Meng Y (2019). 广西海风藤HPLC指纹图谱研究[HPLC fingerprint analysis of Kadsura heteroclita (Roxb.) Craib]. 湖北中医药大学学 21(4):46-50. http://www.cnki.com.cn/Article/CJFDTotal-HZXX201904011.htm

Fidan O, Zhan J (2018). Reconstitution of medicinally important plant natural products in microorganisms. In: Kermode AR (Eds). Molecular Pharming: Applications, Challenges, and Emerging Areas. John Wiley & Sons, Inc, NJ, USA, pp 383-415. https://doi.org/10.1074/jbc.274.2.618

Fujita M, Gang DR, Davin LB, Lewis NG (1999). Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. Journal of Biological Chemistry 274(2):618-627. https://doi.org/10.1074/jbc.274.2.618

Gao R, Yu D, Chen L, Wang W, Sun L, Chang Y (2019). Cloning and functional analysis of squalene synthase gene from Dryopteris fragrans (L.) Schott. Protein Expression and Purification 155:95-103. https://doi.org/10.1016/j.pep.2018.07.011

Ge Y, Cheng Z, Si X, Ma W, Tan L, Zang X, … Zhou Z (2019). Transcriptome profiling provides insight into the genes in carotenoid biosynthesis during the mesocarp and seed developmental stages of avocado (Persea americana). International Journal of Molecular Sciences 20(17):4117. https://doi.org/10.3390/ijms20174117

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, … Zeng Q (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29(7):644-652. https://doi.org/10.1038/nbt.1883

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3):307-321. https://doi.org/10.1093/sysbio/syq010

Guo H (2017). 五味子科药用植物叶绿体基因组学研究与内南五味子的分子鉴定[Study on chloroplast genome of Schisandraceae, and molecular identification of Kadsura interior]. 硕士论文, 北京协和医学院. http://cdmd.cnki.com.cn/Article/CDMD-10023-1017227498.htm

Hemmati S, von Heimendahl CB, Klaes M, Alfermann AW, Schmidt TJ, Fuss E (2010). Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Medica 76(9):928-934. https://doi.org/10.1055/s-0030-1250036

Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA, … Tester M (2017). The genome of Chenopodium quinoa. Nature 542(7641):307-312. https://doi.org/10.1038/nature21370

Kanehisa M (2020). KEGG PATHWAY Database. Retrieved 2020 April 20 from https://www.kegg.jp/kegg/pathway.html.

Kang J, Zhang Q, Jiang X, Zhang T, Long R, Yang Q, Wang Z (2019). Molecular cloning and functional identification of a squalene synthase encoding gene from slfalfa (Medicago sativa L.). International Journal of Molecular Sciences 20(18):4499. https://doi.org/10.3390/ijms20184499

Kim KW, Moinuddin SG, Atwell KM, Costa MA, Davin LB, Lewis NG (2012). Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. Journal of Biological Chemistry 287(41):33957-33972. https://doi.org/10.1074/jbc.M112.387423

Kim MK, Jeon JH, Fujita M, Davin LB, Lewis NG (2002). The western red cedar (Thuja plicata) 8-8'DIRIGENT family displays diverse expression patterns and conserved monolignol coupling specificity. Plant Molecular Biology 49(2):199-214. https://doi.org/10.1023/A:1014940930703

Letunic I, Bork P (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Research 47(W1):W256-W259. https://doi.org/10.1093/nar/gkz239

Li B, Dewey C (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323. https://doi.org/10.1186/1471-2105-12-323

Li N, Zhao M, Liu T, Dong L, Cheng Q, Wu J, … Lu W (2017). A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Frontiers in Plant Science 8:1185. https://doi.org/10.3389/fpls.2017.01185

Liu R, Liu Q, Li B, Liu L, Cheng D, Cai X, … Wang W (2020). Pharmacokinetics, bioavailability, excretion, and metabolic analysis of Schisanlactone E, a bioactive ingredient from Kadsura heteroclita (Roxb) Craib, in rats by UHPLC-MS/MS and UHPLC-Q-Orbitrap HRMS. Journal of Pharmaceutical and Biomedical Analysis 177:112875. https://doi.org/10.1016/j.jpba.2019.112875

Mao X, Cai T, Olyarchuk JG, Wei L (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787-3793. https://doi.org/10.1093/bioinformatics/bti430

Markulin L, Corbin C, Renouard S, Drouet S, Gutierrez L, Mateljak I, … Lainé E (2019). Pinoresinol-lariciresinol reductases, key to the lignan synthesis in plants. Planta 249(6):1695-1714. https://doi.org/10.1007/s00425-019-03137-y

Matías-Hernández L, Jiang W, Yang K, Tang K, Brodelius PE, Pelaz S (2017). AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant Journal 90(3):520-534. https://doi.org/10.1111/tpj.13509

Mertens J, Pollier J, Vanden Bossche R, Lopez-Vidriero I, Franco-Zorrilla JM, Goossens A (2016). The bHLH transcription factors TSAR1 and TSAR2 regulate triterpene saponin biosynthesis in Medicago truncatula. Plant Physiology 170(1):194-210. https://doi.org/10.1104/pp.15.01645

Mertens J, Van Moerkercke A, Vanden Bossche R, Pollier J, Vanden Bossche R, Goossens A (2016). Clade IVa basic helix-hoop-helix transcription factors form part of a conserved jasmonate signaling circuit for the regulation of bioactive plant terpenoid biosynthesis. Plant and Cell Physiology 57(12):2564-2575. https://doi.org/10.1093/pcp/pcw168

Nag A, Choudhary S, Masand M, Parmar R, Bhandawat A, Seth R, … Sharma RK (2020). Spatial transcriptional dynamics of geographically separated genotypes revealed key regulators of podophyllotoxin biosynthesis in Podophyllum hexandrum. Industrial Crops and Products 147:112247. https://doi.org/10.1016/j.indcrop.2020.112247

Nagegowda DA, Gupta P (2020). Advances in the biosynthesis, regulation, and metabolic engineering of plant specialized terpenoids. Plant Science 294:110457. https://doi.org/10.1016/j.plantsci.2020.110457

Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008). Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. Journal of Biological Chemistry 283(23):15550-15557. https://doi.org/10.1074/jbc.M801131200

Pankratov I, McQuinn R, Schwartz J, Bar E, Fei Z, Lewinsohn E, … Hirschberg J (2016). Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. Plant Journal 88(1):82-94. https://doi.org/10.1111/tpj.13232

Paulino PR, Diego Mauricio ROP, Corrêa LGG, Rensing SA, Birgit K, Bernd MR (2010). PlnTFDB: updated content and new features of the plant transcription factor database. Nucleic Acids Research 38:D822-D827. https://doi.org/10.1093/nar/gkp805

State Council Information Office of the PRC (2020). 国新办举行中医药防治新冠肺炎重要作用及有效药物发布会图文实录 [Record of a press conference held by National Information Office on the important role of Chinese medicine in the prevention and treatment of COVID-19 and the effective drugs release]. Cited 2020 May 5 http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/42311/42768/wz42770/Document/1675777/1675777.htm.

Ralph SG, Jancsik S, Bohlmann J (2007). Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.). Phytochemistry 68(14): 1975-1991. https://doi.org/10.1016/j.phytochem.2007.04.042

Rasbery JM, Shan H, LeClair RJ, Norman M, Matsuda SP, Bartel B (2007). Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development. Journal of Biological Chemistry 282(23):17002-17013. https://doi.org/10.1074/jbc.M611831200

Rather GA, Sharma A, Jeelani SM, Misra P, Kaul V, Lattoo SK (2019). Metabolic and transcriptional analyses in response to potent inhibitors establish MEP pathway as major route for camptothecin biosynthesis in Nothapodytes nimmoniana (Graham) Mabb. BMC Plant Biology 19(1):301. https://doi.org/10.1186/s12870-019-1912-x

Ribeiro B, Lacchini E, Bicalho K, Mertens J, Arendt P, Vanden Bossche R, … Buitink J (2020). A seed-specific regulator of triterpene saponin biosynthesis in Medicago truncatula. Plant Cell 32(6):2020-2042. https://doi.org/10.1105/tpc.19.00609

Rong Q, Jiang D, Chen Y, Shen Y, Yuan Q, Lin H, … Huang L (2016). Molecular cloning and functional analysis of squalene synthase 2 (SQS2) in Salvia miltiorrhiza Bunge. Frontiers in Plant Science 7:1274. https://doi.org/10.3389/fpls.2016.01274

Sadat-Hosseini M, Bakhtiarizadeh MR, Boroomand N, Tohidfar M, Vahdati K (2020). Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut. PloS One 15(4):e0232005. https://doi.org/10.1371/journal.pone.0232005

Schweizer F, Colinas M, Pollier J, Van Moerkercke A, Vanden Bossche R, de Clercq R, Goossens A (2018). An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metabolic Engineering 48:150-162. https://doi.org/10.1016/j.ymben.2018.05.016

Shehla N, Li B, Cao L, Zhao J, Jian Y, Daniyal M, … Rahman A (2020). Xuetonglactones A-F: Highly oxidized lanostane and cycloartane triterpenoids from Kadsura heteroclita Roxb. Craib. Frontiers in Chemistry 7:935. https://doi.org/10.3389/fchem.2019.00935

Song M, Peng X (2019). Genome-wide identification and characterization of DIR genes in Medicago truncatula. Biochemical Genetics 57(4):487-506. https://doi.org/10.1007/s10528-019-09903-7

Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, … Xie D (2013). The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genetics 9(7):e1003653. https://doi.org/10.1371/journal.pgen.1003653

Van Moerkercke A, Steensma P, Gariboldi I, Espoz J, Purnama PC, Schweizer F, … Goossens A (2016). The basic helix-loop-helix transcription factor BIS2 is essential for monoterpenoid indole alkaloid production in the medicinal plant Catharanthus roseus. Plant Journal 88(1):3-12. https://doi.org/10.1111/tpj.13230

Van Moerkercke A, Steensma P, Schweizer F, Pollier J, Gariboldi I, Payne R, … Goossens A (2015). The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus. Proceedings of the National Academy of Sciences USA 112(26):8130-8135. https://doi.org/10.1073/pnas.1504951112

von Heimendahl CB, Schäfer KM, Eklund P, Sjöholm R, Schmidt TJ, Fuss E (2005). Pinoresinol–lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66(11):1254-1263. https://doi.org/10.1016/j.phytochem.2005.04.026

Wang C, Zhu J, Liu M, Yang Q, Wu J, Li Z (2018). De novo sequencing and transcriptome assembly of Arisaema heterophyllum Blume and identification of genes involved in isoflavonoid biosynthesis. Scientific Reports 8(1):1-12. https://doi.org/10.1038/s41598-018-35664-1

Wang Z, Guo H, Zhang Y, Lin L, Cui M, Long Y, Xing Z (2019). DNA methylation of farnesyl pyrophosphate synthase, squalene synthase, and squalene epoxidase gene promoters and effect on the saponin content of Eleutherococcus Senticosus. Forests 10(12):1053. https://doi.org/10.3390/f10121053

World Health Organization (2020). Coronavirus disease (COVID-2019) situation reports. Retrieved 2020 August 11, from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.

Xia Z, Costa MA, Pélissier HC, Davin LB, Lewis NG (2001). Secoisolariciresinol dehydrogenase purification, cloning, and functional expression implications for human health protection. Journal of Biological Chemistry 276(16):12614-12623. https://doi.org/10.1074/jbc.M008622200

Xu J, van Herwijnen ZO, Dräger DB, Sui C, Haring MA, Schuurink RC (2018). SlMYC1 regulates type VI glandular trichome formation and terpene biosynthesis in tomato glandular cells. Plant Cell 30(12):2988-3005. https://doi.org/10.1105/tpc.18.00571

Xu X, Guignard C, Renaut J, Hausman J, Gatti E, Predieri S, Guerriero G (2019). Insights into lignan composition and biosynthesis in stinging nettle (Urtica dioica L.). Molecules 24(21):3863. https://doi.org/10.3390/molecules24213863

Xu YH, Liao YC, Lv FF, Zhang Z, Sun PW, Gao ZH, … Wei JH (2017). Transcription factor AsMYC2 controls the jasmonate-responsive expression of ASS1 regulating sesquiterpene biosynthesis in Aquilaria sinensis (Lour.) Gilg. Plant and Cell Physiology 58(11):1924-1933. https://doi.org/10.1093/pcp/pcx122

Xue L, He Z, Bi X, Xu W, Wei T, Wu S, Hu S (2019). Transcriptomic profiling reveals MEP pathway contributing to ginsenoside biosynthesis in Panax ginseng. BMC Genomics 20(1):134. https://doi.org/10.1186/s12864-019-5718-x

Youn B, Moinuddin SG, Davin LB, Lewis NG, Kang C (2005). Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. Journal of Biological Chemistry 280(13):12917-12926. https://doi.org/10.1074/jbc.M413266200

Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010). Method gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14

Zhang B, Liu Y, Chen M, Feng J, Ma Z, Zhang X, Zhu C (2018). Cloning, expression analysis and functional characterization of squalene synthase (sqs) from tripterygium wilfordii. Molecules 23(2):269. https://doi.org/10.3390/molecules23020269

Zhang DH, Jiang LX, Li N, Yu X, Zhao P, Li T, Xu JW (2017). Overexpression of the squalene epoxidase gene alone and in combination with the 3-hydroxy-3-methylglutaryl coenzyme A gene increases ganoderic acid production in Ganoderma lingzhi. Journal of Agricultural Food and Chemistry 65(23):4683-4690. https://doi.org/10.1021/acs.jafc.7b00629

Zhang M, Zhou J, Wei W, Hao E, Deng J, Hou X (2019). 瑶药大红钻化学成分及药理作用研究进展 [Research progress on chemical constituents and pharmacological effects of Yao medicine Kadsura heteroclita]. 中草药 50(14): 3493-3502. http://www.cnki.com.cn/Article/CJFDTotal-ZCYO201914033.htm

Zhang X, Allan A, Li C, Wang Y, Yao Q (2015). De novo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens. International Journal of Molecular Sciences 16(5):11550-11573. https://doi.org/10.3390/ijms160511550

Zhao M, Zhong Q, Tian M, Han R, Ren Y (2020). Comparative transcriptome analysis reveals differentially expressed genes associated with the development of Jerusalem artichoke tuber (Helianthus tuberosus L.). Industrial Crops and Products 151:112455. https://doi.org/10.1016/j.indcrop.2020.112455

Zhou H, Ma S, Chen B, Han Z, Yao H (2016). 鸡血藤、滇鸡血藤、大血藤等血藤类药材的psbA-trnH条形码分子鉴定 [Identification of Spatholobi Caulis, Kadsurae Caulis and Sargentodoxae Caulis using the psbA-trnH barcode]. 世界科学技术-中医药现代化 (1):40-45. http://www.cnki.com.cn/Article/CJFDTOTAL-SJKX201601010.htm

Zhou J, Zhang Y, Hu T, Su P, Zhang Y, Liu Y, … Gao W (2018). Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. International Journal of Biological Macromolecules 120:203-212. https://doi.org/10.1016/j.ijbiomac.2018.08.073

Zhou P, Pu T, Gui C, Zhang X, Gong L (2020). Transcriptome analysis reveals biosynthesis of important bioactive constituents and mechanism of stem formation of Dendrobium huoshanense. Scientific Reports 10:2857. https://doi.org/10.1038/s41598-020-59737-2

Downloads

Published

2020-12-22

How to Cite

ZHANG, X., LI, C., CHIO, C., KAMESHWAR, A. K. S., MA, T., & QIN, W. (2020). Transcriptome analysis to identify genes involved in lignan, sesquiterpenoid and triterpenoid biosynthesis in medicinal plant Kadsura heteroclita. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 1802–1831. https://doi.org/10.15835/nbha48412044

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48412044