Nutritional value and antioxidant activity of the maguey syrup (Agave salmiana and A. mapisaga) obtained through three treatments
DOI:
https://doi.org/10.15835/nbha48311947Keywords:
aguamiel; antioxidants; melanoidins; non-enzymatic darkening; syrupsAbstract
During the Pre-Colombian period magueys were used in Mesoamerica for their sap, which is named “aguamiel” (literally “honey water” in Spanish). Aguamiel is then fermented into “pulque”, followed by (in order of importance): textiles, apparel, different thicknesses cords, food (sweetener, syrup, vinegar, flower buds, and cooked immature flowering stalks), firewood and construction materials. The maguey syrup is a product that is traditionally obtained by concentrating the aguamiel by means of an artisanal evaporation treatment (high temperatures, atmospheric pressure and prolonged times). The nutritional and nutraceutical value of this concentrate is unknown despite its wide consumption since pre-Hispanic times in various regions of Mexico. The objective of this work was to evaluate the nutritional value and the content of antioxidant compounds of the maguey syrup obtained from the aguamiel (Agave salmiana and A. mapisaga) through three elaboration treatments (artisanal evaporation, evaporation under reduced pressure and lyophilization). The best species for the production of maguey syrup turned out to be the aguamiel of the A. salmiana due to its nutritional and nutraceutical attributes, higher content of reducing sugars and lower sucrose compared to that of A. mapisaga. The maguey syrup is a sweetener with a higher content of protein (3320 mg 100-1) in comparison to bee honey (152.7 mg 100 g-1). The maguey syrup obtained by lyophilization (LYT) retained the nutraceutical value; but its antioxidant activity was statistically equal to the syrup obtained by evaporation under reduced pressure (RPT), and the artisanal evaporation treatment (AET) had a decrease in vitamin C content in comparison to LYT and RPT. The syrups obtained by RPT and AET presented different degrees of non-enzymatic darkening, possibly due to the formation of melanoidins (dark pigments). The darkest syrup obtained by AET had the highest antioxidant capacity (987.24 μM TE 100 g-1) associated to a higher content of phenolic compounds (593.74 mg GAE 100 g-1).
Metrics
References
Ahumada-Santosa YP, Montes-Avila J, Uribe-Beltran M, Diaz-Camacho SP, Lopez- Angulo G… Delgado-Vargas F (2013). Chemical characterization, antioxidant and antibacterial activities of six Agave species from Sinaloa, Mexico. Industrial Crops and Products 49:143-149. https://doi.org/10.1016/j.indcrop.2013.04.050
Al-Mamarya M, Al-Meerib A, Al-Habori M (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition Research 22:1041-1047. https://doi.org/10.1016/S0271-5317(02)00406-2
Almaraz-Abarca N, Delgado-Alvarado E, Avila-Reyes J, Uribe-Soto J, Gonzalez-Valdez L (2013). The phenols of the genus Agave (Agavaceae). Journal of Biomaterials and Nanobiotechnology 4:9-16. http://dx.doi.org/10.4236/jbnb.2013.43A002
Alves Filho EG, Cullen PJ, Frias JM, Bourke P, Tiwari BK, … Fernandes FAN (2016). Evaluation of plasma, high-pressure and ultrasound processing on the stability of fructooligosaccharides. International Journal of Food Science and Technology 51:2034-2040. https://doi.org/10.1111/ijfs.13175
AOAC (2000). Official Methods of Analysis of AOAC International (17th ed.). MD: Association of Official Analytical Chemist.USA.
Arvouet-Grand A, Vennat B, Pourrat A, Legret P (1994). Standardisation d’un extrait de propolis et identification des principals constituants. Journal of Pharmaceutical Sciences 49:462-468.
Brand-Williams W, Culivier M, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Brown JE (2011). Nutrition: through the life cycle. Wadsworth, Cengage Learning (4a ed.), Minnesota, USA. pp 516.
Brudzynski K, Miotto D (2011). Honey melanoidins: analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chemistry 127:1023-1030. https://doi.org/10.1016/j.foodchem.2011.01.075
Burdurlu HS, Koca N, Karadeniz F (2006). Degradation of vitamin C in citrus juice concentrates during storage. Journal of Food Engineering 74:211-216. https://doi.org/10.1016/j.jfoodeng.2005.03.026
Chávez-Güitrón LE, Salinas-Perez FC, Pérez-Salinas EA, Caballero J, Vallejo-Zamora A, Sandoval-Zapotitla E (2019). Variation of epidermal-foliar characters of Agave salmiana subsp. Salmiana (Asparagaceae) in the center of Mexico. Botanical Sciences 97(4):711-724. https://doi.org/10.17129/botsci.2159
Colunga GM (2018). Base de datos de nombres técnicos o de uso común en el aprovechamiento de los agaves en México [Database of technical names or commonly used in the use of agaves in Mexico]. CONABIO. Retrieved 2019 January from https://www.gbif.org/dataset/d9bceb64-0334-43e8-868e-72d4cd506ca1#description
Dhuique-Mayer C, Tbatou M, Carail M, Caris-Veyrat C, Dornier M, Amiot M (2007). Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. Journal of Agricultural and Food Chemistry 55(10):4209-4216. https://doi.org/10.1021/jf0700529
Enriquez-Salazar IM, Veana F, Aguilar CN, De la Garza-Rodriguez IM, Lopez MG… Rodríguez-Herrera, R. (2017). Microbial diversity and biochemical profile of aguamiel collected from Agave salmiana and A. atrovirens during different seasons of year. Food Science and Biotechnology 26(4):1003-1011. https://doi.org/10.1007/s10068-017-0141-z
Escuredo O, Miguez M, Fernández-Gonzalez M, Seijo M (2013a). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chemistry 138:851-856. https://doi.org/10.1016 / j.foodchem.2012.11.015
Escuredo O, Seijo M, Salvador J, Gonzalez-Martin M (2013b). Near infrared spectroscopy for prediction of antioxidant compounds in the honey. Food Chemistry 141:3409-3414. https://doi.org/10.1016/j.foodchem.2013.06.066
Ferreira IC, Aires E, Barreira JC, Estevinho LM (2009). Antioxidant activity of Portuguese honey samples: different contributions of the entire honey and phenolic extract. Food Chemistry 114:1438-1443. https://doi.org/10.1016/j.foodchem.2008.11.028
Garcia-Mendoza A (2011). Flora del Valle de Tehuacán-Cuicatlán. Fascículo 88. Agavacaea [Flora from Valle of Tehuacan-Cuicatlan. Fascicle 88. Agavacaea]. UNAM, México. pp 95.
Godinez-Hernandez CI, Aguirre-Rivera JR, Juarez-Flores BI, Ortiz-Perez MO, Becerra-Jimenez J (2016). Extracción y caracterización de fructanos de Agave salmiana Otto ex Salm-Dyck [Extraction and characterization of Agave salmiana Otto ex Salm-Dyck fructans]. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 22(1):59-72. http://dx.doi.org/10.5154/r.rchscfa.2015.02.007
Gonzalez-Miret ML, Terrab A, Herranz D, Fernandez-Recamales MA, Heredia FJ (2005). Multivariate correlation between color and mineral composition of honey and by their botanical origin. Journal of Agricultural and Food Chemistry 53(7):2574-2580. https://doi.org/10.1021/jf048207p
Gonzalez-Ponce MR, Bernal-Arroyo B, Gonzalez-Gonzalez CE, Segoviano-Garfías N (2016). Evaluación de ácidos como catalizadores en la hidrólisis de inulina de Agave Tequilana Weber var. Azul [Evaluation acids as catalysts in the inulin hydrolysis of Agave Tequilana Weber var. Azul]. Revista de Ciencias Naturales y Agropecuarias 8(3):33-38.
Gupta J, Sharma R (2009). Production technology and quality characteristics of mead and fruit- honey wines: a review. Natural Product Radiance 8(4):345-355.
http://nopr.niscair.res.in/bitstream/123456789/5987/1/NPR%208%284%29%20345-355.pdf
Guzman-Pedraza R, Contreras-Esquivel JC (2018). Aguamiel y su fermentación: Ciencia más allá de la tradición [Aguamiel and its fermentation: Science beyond tradition]. Mexican Journal of Biotechnology 3:1-22. https://doi.org/10.29267/mxjb.2018.3.1.1
Herbig AL, Renard CM (2017). Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chemistry 220:444-451. https://doi.org/10.1016 / j.foodchem.2016.10.012
Lappe-Oliveras P, Moreno-Terrazas R, Arrizon-Gaviño J, Herrera-Suarez T, Garcia-Mendoza A, Gschaedler-Mathis A (2008). Yeasts associated with the production of Mexican alcoholic non-distilled and distilled Agave beverages. FEMS Yeast Research 8:1037-1052. https://doi.org/10.1111/j.1567-1364.2008.00430
Martinez-Gutierrez F, Ratering S, Juarez-Flores B, Godinez-Hernandez C, Geissler-Plaum R... Schnell S (2017). Potential use of Agave salmiana as a prebiotic that stimulates the growth of probiotic bacteria. LWT-Food Science and Technology 84:151-159. https://doi.org/10.1016/j.lwt.2017.05.044
Mellado-Mojica E, Lopez-Perez MG (2013). Análisis comparativo entre jarabe de agave azul (Agave tequilana Weber var. azul) y otros jarabes naturales [Comparative analysis between blue agave syrup (Agave tequilana Weber var. Blue) and other natural syrups]. Agrociencia 47(3):233-244. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S140531952013000300003&lng=es&tlng=es
Michel-Cuello C, Gallegos Fonseca G, Maldonado Cervantes E, Aguilar Rivera N (2015). Effect of temperature and pH environment on the hydrolysis of maguey fructans to obtain fructose syrup. Revista Mexicana de Ingeniería Química 14(3):615-622. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-27382015000300005&lng=es&tlng=en
Mora-López JL, Reyes-Agüero JA, Flores-Flores JL, Peña-Valdivia CB, Aguirre-Rivera JR (2011). Variación morfológica y humanización de la sección Salmianae del género Agave. Agrociencia 45:465-477. http://www.scielo.org.mx/pdf/agro/v45n4/v45n4a6.pdf
Narvaez SU, Martinez T, Jimenez VM (2016). El cultivo de maguey pulquero: opción para el desarrollo de comunidades rurales del altiplano mexicano [The cultivation of maguey pulquero: an option for the development of rural communities in the Mexican Central Plateau]. Revista de Geografía Agrícola 56:33-44. https://www.redalyc.org/pdf/757/75749287005.pdf
Ortiz-Basurto RI, Pourcelly G, Dogo T, Williams P, Dornier M, Belleville MP (2008). Analysis of the main components of the aguamiel produced by the maguey-pulquero (Agave mapisaga) throughout the harvest period. Journal of Agricultural and Food Chemistry 56:3682-3687. https://doi.org/10.1021/jf072767h
Pastoriza S, Rufian-Henares JA (2014). Contribution of melanoidins to the antioxidant capacity of the Spanish diet. Food Chemistry 164:438-445. https://doi.org/10.1016/j.foodchem.2014.04.118
Ren Z, Bian X, Lin L, Bai Y, Wang W (2010). Viscosity and melt fragility in honey-water mixtures. Journal of Food Engineering 100:705-710. https://doi.org/10.1016/j.jfoodeng.2010.06.004
Reyes-Agüero JA, Peña-Valdivia CB, Aguirre-Rivera JR, Mora-López JL (2019). Variación intraespecifica de Agave mapisaga Trel. y Agave salmiana Otto ex Salm-Dyck. (Asparagaceae) relacionada con los usos ancestrales en la región Hñähñu en el centro de México [Infraspecific variation of Agave mapisaga Trel. and Agave salmiana Otto ex Salm-Dyck. (Asparagaceae) related to ancestral usages at the Hñähñu region in central Mexico]. Agrociencia 53: 563-579. http://www.colpos.mx/agrocien/Bimestral/2019/may-jun/art-7.pdf
Rodríguez BA, Mendoza S, Iturriga HM, Castaño-Tostado E (2012). Quality parameters and antioxidant and antibacterial properties of some Mexican honeys. Journal of Food Science 71:22-27. https://doi.org/10.1111/j.1750-3841.2011.02487.x
Santos-Zea L, Leal-Diaz AM, Jacobo-Velazquez DA, Rodriguez-Rodriguez J, Garcia-Lara S, Gutierrez-Uribe JA (2016). Characterization of concentrated agave saps and storage effects on browning, antioxidant capacity and amino acid content. Journal of Food Composition and Analysis 45:113-120. https://doi.org/10.1016/j.jfca.2015.10.005
Singleton VL, Rossi JA (1965). Colorymetry of total phenolics with phosphomolybdic– phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144-158.
Tenore GC, Ritieni A, Campiglia P, Novellino E (2012). Nutraceutical potential of monofloral honeys produced by the Sicilian black honeybees (Apis mellifera ssp. sicula). Food and Chemical Toxicology 50:1955-1961. https://doi.org/10.1016 / j.fct.2012.03.067
Tovar-Robles CL, Perales-Segovia C, Nava Cedillo A, Valera-Montero LL, Gomez-Leyva JF… Silos-Espino H (2011). Effect of aguamiel (agave sap) on hematic biometry in rabbits and its antioxidant activity determination. Italian Journal of Animal Science 10:21-24. https://doi.org/10.4081/ijas.2011.e21
Turkmen N, Sari F, Poyrazoglu ES, Velioglu YS (2006). Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry 95:653-657. https://doi.org/10.1016/j.foodchem.2005.02.004
Velazquez-Rios IO, Gonzalez‐Garcia G, Mellado‐Mojica E, Veloz Garcia RA, Dzul Cauich JG… Garciia-Vieyra MI (2019). Phytochemical profiles and classification of Agave syrups using 1H‐NMR and chemometrics. Food Science & Nutrition 7(1):3-13. https://doi.org/10.1002/fsn3.755
Wang HY, Qian H, Wei-Rong Y (2011). Melanoidins produced by the Maillard reaction: structure and biological activity. Food Chemistry 128:573-584. https://doi.org/10.1016/j.foodchem.2011.03.075
Yanniotis S, Skaltsi S, Karaburnio S (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering 72:372-377. https://doi.org/10.1016/j.jfoodeng.2004.12.017
Downloads
Published
How to Cite
Issue
Section
License
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.