Polyphenolic composition of grape stems

Authors

  • Bozena PRUSOVA Mendel University in Brno, Department of Viticulture and Enology, Valticka 337, CZ-691 44, Lednice (CZ) https://orcid.org/0000-0003-2582-1713
  • Josef LICEK Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice (CZ)
  • Michal KUMSTA Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice (CZ)
  • Mojmir BARON Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice (CZ)
  • Jiri SOCHOR Mendel University in Brno, Faculty of Horticulture, Department of Viticulture and Enology, Valtická 337, CZ-691 44 Lednice (CZ) https://orcid.org/0000-0001-7823-1544

DOI:

https://doi.org/10.15835/nbha48311936

Keywords:

antioxidant activity; grape stems; polyphenols; winemaking by-products

Abstract

This study is focused on the study of polyphenolic compounds in grape stems as by-product of winemaking industry. Two white varieties of Grüner Veltliner and Sauvignon and two red varieties of Blauer Portugieser and Cabernet Moravia were selected for the study. Antioxidant activity, concentration of total polyphenols and concentration of individual phenolic compounds were determined. The results show a higher concentration of polyphenols and higher values of antioxidant activity in red varieties. The Blauer Portugieser variety contained the highest concentrations of syringic acid 1.346 mg.L-1, caffeic acid 20 mg.L-1, ferulic acid 1.192 mg.L-1, coumaric acid 3.231 mg.L-1, trans-resveratrol 14.195 mg.L-1, catechin 79.314 mg.L-1 and epicatechin 33.205 mg.L-1. Cabernet Moravia contained the highest concentration of protocatechuic acid 1.201 mg.L-1, the Sauvignon variety reached the highest concentration of gallic acid 4.015 mg.L-1 and hydroxybenzoic acid 0.076 mg.L-1. The highest values of alpha-amino acids were determined in the Blauer Portugieser variety 165.3 mg L-1 and the lowest in the Grüner Veltliner variety 33.3 mg L-1. The highest concentration of ammonia nitrogen was 214 mg L-1 for the Blauer Portugieser variety and the lowest concentration of ammonia nitrogen was measured in Cabernet Moravia 35.7 mg L-1.

Metrics

Metrics Loading ...

References

Anastasiadi M, Chorianopoulos NG, Nycha GJE, Haroutounian SA (2009). Antilisterial activities of polyphenol-rich extracts of grapes and vinification byproducts. Journal of Agricultural and Food Chemistry 57:457-463. https://doi.org/10.1021/jf8024979

Anastasiadi M, Pratsinis H, Kletsas D, Skaltsounis AL, Haroutounian SA (2012). Grape stem extracts: Polyphenolic content and assessments of their in vitro antioxidant properties. LWT Food Science and Technology 48:316-322. 10.1016/j.lwt.2012.04.006

Anwar F, Kalsoom U, Sultana B, Mushtaq M, Mehmood T, Arshad HA (2013). Effect of drying method and extraction solvent on the total phenolics and antioxidant activity of cauliflower (Brassica oleracea L.) extracts. International Food Research Journal 20:653-659.

Apostolou A, Stagos D, Galitsiou E, Spyrou A, Haroutounian S, Portesis N, ... Kouretas D (2013). Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food of Chemistry and Toxicology 61:60-68. 10.1016/j.fct.2013.01.029

Bang SH, Hyun YJ, Shim J, Hong SW, Kim DH (2015). Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing a-L-rhamnosidase from Bifidobacterium dentium. Journal of Microbiology and Biotechnology 25:18-25. https://doi.org/10.4014/jmb.1404.04060

Baron M, Kumsta M, Prusova B, Tomaskova L, Sochor J (2017). Effect of pre-fermentation maceration on the content of antioxidant compounds in grapevine juice. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 45(1):105-111. https://doi.org/10.15835/nbha45110531

Barros A, Girones-Vilaplana A, Teixeira A, Collado J, Moreno DA, Rosa E, Dominigues-Perles R (2014). Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Research International 65:375-384. https://doi.org/10.1016/j.sjbs.2020.02.013

Cabanis JC (2000). Ácidos orgánicos, sustancias minerales, vitaminas y lípidos in Enología: Fundamentos científicos y tecnológicos [Organic acids, minerals, vitamins and lipids in enology: Scientific fundamentals and technological]. France: Mundi Prensa and AMV. http://faostat.fao.org/site/339/default.aspx.

Çetin ES, Altinöz D, Tarçan E, Baydar NG (2011). Chemical composition of grape canes. Industrial Crops and Products 34:994-998. https://doi.org/10.1016/j.indcrop.2011.03.004

Chafer A, Pascual-Martı´ MC, Salvador A, Berna A (2005). Supercritical fluid extraction and HPLC determination of relevant polyphenolic compounds in grape skin. Journal of Separation Science 28:2050-2056. https://doi.org/10.1002/jssc.200500128

Di Donato P, Taurisano V, Tommonaro G, Pasquale V, Jiménez JMS, de Pascual-Teresa S, ... Nicolaus B (2017). Biological properties of polyphenols extracts from agro industry’s wastes. Waste and Biomass Valorization 18(1):336-341. https://doi.org/10.1080/1828051X.2018.1529544

Di Lecce G, Arranz S, Jáuregui O, Tresserra-Rimbau A, Quifer-Rada P, Lamuela-Raventós RM (2014). Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chemistry 145:874-882. 10.1016/j.foodchem.2013.08.115

Dineiro-García Y, Suarez Valles B, Picinelli Lobo A (2009). Phenolic and antioxidant composition of by-products from the cider industry: apple pomace. Food Chemistry 117:731-738. https://doi.org/10.1016/j.foodchem.2009.04.049

Domínguez-Perles R, Teixeira AI, Rosa E, Barros AI (2014). Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and response surface methodology. Food Chemistry 164:339-346. http://dx.doi.org/10.1016/j.foodchem.2014.05.020

Garrido-Banuelos G, Buica A, Schuckel J, Zietsman AJJ, Willats WGT, Moore JP, Du Toit WJ (2019). Investigating the relationshipbetween cell wall polysaccharide composition and the extractability of grape phenolic compounds into Shiraz wines. Part II: Extractability during fermentation into wines made from grapes of different ripeness levels. Food Chemistry 278:26-35. https://doi.org/10.1016/j.foodchem.2018.10.136

González-Centeno MR, Jourdes M, Fermenia A, Simal S, Rosselló C, Teissedre PL (2012). Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). Journal of Agricultural and Food Chemistry 60:11850-11858. https://doi.org/ 10.1021/jf303047k

Gouvinhas I, Pinto R, Santos R, Saavedra MJ, Barros AI (2020). Enhanced phytochemical composition and biological activities of grape (Vitis vinifera L.) stems growing in low altitude regions. Scientia Horticulturae 265:109-248. https://doi.org/10.1016/j.scienta.2020.109248.

Kabir F, Tow WW, Hamauzu Y, Katayama S, Tanaka S, Nakamura S (2015). Antioxidant and cytoprotective activities of extracts prepared from fruit and vegetable wastes and by-products. Food Chemistry 167:358-362. https://doi.org/10.1016/j.foodchem.2014.06.099

Karvela E, Makris DP, Kalogeropoulos N, Karathanos VT (2009). Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta 79:1311-1321. https://doi.org/10.1016/j.profoo.2011.09.249

Leal C, Santos AR, Pinto R, Queiroz M, Rodrigues M, Saavedra MJ, ... Gouvinhas I (2020). Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi Journal of Biological Sciences 27:1009-1015. doi: https://doi.org/10.1016/j.sjbs.2020.02.013

Llobera A, Canellas J (2007). Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chemistry 101:659-666. 10.1016/j.foodchem.2006.02.025

Lu Y, Foo LY (1999). The polyphenol constituents of grape pomace. Food Chemistry 65:1-8. https://doi.org/10.1016/S0308-8146(98)00245-3

Maier T, Schieber A, Kammerer DR, Carle R (2009). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry 112(3):551-559.

Makris DP, Boskou G, Andrikopoulos NK, Kefalas P (2008). Characterisation of certain major polyphenolic antioxidants in grape (Vitis vinifera cv. Roditis) stems by liquid chromatography-mass spectrometry. European Food Research Technology 226:1075-1079. https://doi.org/10.1007/s00217-007-0633-9

Okolie C, Akanbi T, Mason B, Udenigwe C, Aryee A (2019). Influence of conventional and recent extraction technologies on physicochemical properties of bioactive macromolecules from natural sources: a review. Food Research International 116:827-839. https://doi.org/10.1016/j.foodres.2018.09.018

Paixão N, Perestrelo R, Marques JC, Câmara JS (2007). Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chemistry 105:204-214. https://doi.org/10.1016/j.foodchem.2007.04.017.

Pascual O, Gonzalez-Royo E (2016). Influence of grape seeds and stems on wine composition and astringency. Journal of Agricultural and Food Chemistry 64(34):6555-6566. https://doi.org/10.1021/acs.jafc.6b01806

Pintać D, Majkic T, Torovic L, Orcica D, Beara I, Simin N, ... Lesjak M (2018). Solvent selection for efficient extraction of bioactive compounds from grape Pomace. Industrial Crops and Products 111:379-390. https://doi.org/10.1016/j.indcrop.2017.10.038

Portu J, López R, Santamaría P, Garde-Cerdán T (2018). Methyl jasmonate treatment to increase grape and wine phenolic content in Tempranillo and Graciano varieties during two growing seasons. Scientia Horticulturae (Amsterdam) 240:378-386. https://doi.org/10.1016/j.scienta.2018.06.019.

Pulido R, Bravo L, Saura-Calixo F (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry 48:3396-3402. https://doi.org/10.1021/jf9913458

Queiroz M, Oppolzer D, Gouvinhas I, Silva AM, Barros AIRNA, Raúl Domínguez-Perles R (2017). New grape stems' isolated phenolic compounds modulate reactive oxygen species, glutathione, and lipid peroxidation in vitro: Combined formulations with vitamins C and E. Fitoterapia 120:146-157. http://dx.doi.org/10.1016/j.fitote.2017.06.010

Ruiz-Moreno MJ, Raposo R (2015). Efficacy of olive oil mill extract in replacing sulfur dioxide in wine model. Lwt-Food Science and Technology 61(1):117-123.

Sahpazidou D, Geromichalos GD, Stagos D, Apostolou A, Haroutounian SA, Tsatsakis AM, ... Kouretas D (2014). Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicology Letters 230:218-224. https://doi.org/10.1016/j.toxlet.2014.01.042.

Sanmartin C, Taglieri I, Venturi F, Ferroni G, Flamini G, Macaluso M, ... Zinnai A (2019). Co-fermentation of intact grape clusters and stalk: a natural and economical strategy to modulate nutraceutical and sensory features of Syrah variety. Agrochimica 63(2):197-207. 10.12871/00021857201927

Sá M, Justino V, Spranger MI, Zhao YQ, Han L, Suna BS (2014). Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grape pomace: Effect of mechanical treatments. Phytochemical. Analysis 25:134-140.

Sepúlveda L, Romaní A, Aguilar CN, Teixeira J (2018). Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science and Emerging Technologies 47:38-45. https://doi.org/10.1016/j. ifset.2018.01.012

Silva V, Igrejas G, Falco V, Santos TP, Torres C, Oliveira AMP, ... Poeta P (2018). Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 92:516-522. https://doi.org/10.1016/j.foodcont.2018.05.031

Sochor J, Zitka O, Skutkova H, Pavlik D, Babula P, Krska B, ... Kizek R (2010a). Content of phenolic compounds and antioxidant capacity in fruits of apricot genotypes. Molecules 15(9):6285-6305. https://doi.org/10.3390/molecules15096285

Sochor J, Ryvolova M, Krystofova O, Salas P, Hubalek J, Adam V, ... Kizek R (2010b). Fully automated spectrometric protocols for determination of antioxidant activity: advantages and disadvantages. Molecules 15:8618-8640. https://doi.org/10.3390/molecules15128618

Spatafora C, Barbagallo E, Amico V, Tringali C (2013). Grape stems from Sicilian Vitis vinifera cultivars as a source of polyphenol-enriched fractions with enhanced antioxidant activity. Food Science and Technology 54:542-548. https://doi.org/10.1016/j.lwt.2013.06.007

Teixeira A, Baenas N, Dominguez-Perles R, Barros A, Rosa E, Moreno DA, Garcia-Viguera C (2014). Natural bioactive compounds from winery byproducts as health promoters: A review. International Journal of Molecular Science 15:15638-15678. https://doi.org/10.3390/ijms150915638.

Wenzel J, Samaniego CS (2015). Superheated liquid and supercritical denatured ethanol extraction of antioxidants from Crimson red grape stems. Food Science and Nutrition 3(6):569-576. https://doi.org/10.1002/fsn3.246

Yacco RS, Watrelot AA, Kennedy JA (2016). Red wine tannin structure- activity relationships during fermentation and maceration. Journal of Agricultural and Food Chemistry 64:860-869. https://doi.org/10.1021/acs.jafc.5b05058

Yang J, Martinson TE, Hai R (2009). Phytochemical profiles and antioxidant activities of wine grapes. Food Chemistry 116(1):332-339. https://doi.org/10.1016/j.foodchem.2009.02.021

Downloads

Published

2020-09-29

How to Cite

PRUSOVA, B., LICEK, J., KUMSTA, M., BARON, M., & SOCHOR, J. (2020). Polyphenolic composition of grape stems. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3), 1543–1559. https://doi.org/10.15835/nbha48311936

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48311936

Most read articles by the same author(s)