Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid

Authors

  • Oscar SARIÑANA-ALDACO Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro Km 7.5, Ejido Ana, Torreón, Coahuila 27170 (MX)
  • Esteban SANCHEZ-CHAVEZ Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Cuarta Sur No. 3820 Fraccionamiento Vencedores del Desierto, Delicias, Chihuahua C.P 33089 (MX)
  • Manuel FORTIS-HERNÁNDEZ Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro Km 7.5, Ejido Ana, Torreón, Coahuila 27170 (MX)
  • José Antonio GONZÁLEZ-FUENTES Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista. 25315 Saltillo, Coahuila (MX)
  • Alejandro MORENO-RESENDEZ Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista. 25315 Saltillo, Coahuila (MX)
  • Alfonso ROJAS-DUARTE Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista. 25315 Saltillo, Coahuila (MX)
  • Pablo PRECIADO-RANGEL Tecnológico Nacional de México, Instituto Tecnológico de Torreón, Carretera Torreón-San Pedro Km 7.5, Ejido Ana, Torreón, Coahuila 27170 (MX)

DOI:

https://doi.org/10.15835/nbha48211914

Keywords:

biostimulation; elicitors; human health; nutrient solution; phytochemicals

Abstract

Tomato fruits are a unique functional food and a natural reservoir of nutrients, antioxidants, vitamins and bioactive compounds that improve nutrition and human health. As an important vegetable throughout the world, tomatoes have attracted the attention of researchers to carry out various strategies to improve the functionality of this food aimed at the prevention of diseases, health and global well-being. An agronomic strategy in this study was to evaluate the influence of the application of "salicylic acid (SA)" on the yield and nutraceutical quality of the tomato crop, produced under hydroponic conditions. A completely randomized experimental design with six repetitions was used. SA at five doses (0.025, 0.05, 0.075, 0.1 and 0.125 mM) and one control were applied every 15 days in the nutritive solution under a hydroponic system on tomato plants. The evaluated variables were yield (total fruit weight per plant), fruit parameters (weight, diameter, firmness, and total soluble solids), percentage of weight loss and nutraceutical quality of tomato. The results obtained indicate that the addition of salicylic acid in nutritive solution increased the yield and biosynthesis of phytochemical compounds in tomato fruits, in relation to the control without application. In conclusion, to obtain a higher nutraceutical quality without affecting the tomato fruit yield, it is recommended to use the average concentration (0.125 mM) of SA.

References

Ahmad S, Singh Z, Khan AS, Iqbal Z (2013). Pre-harvest application of salicylic acid maintain the rind textural properties and reduce fruit rot and chilling injury of sweet orange during cold storage. Pakistan Journal of Agricultural Sciences 50(4):559-569.

Ahmadi B, Shariatpanahi ME, Da Silva JAT (2014). Efficient induction of microspore embryogenesis using abscisic acid, jasmonic acid and salicylic acid in Brassica napus L. Plant Cell, Tissue and Organ Culture 116(3):343-351. https://doi.org/10.1007/s11240-013-0408-x

Argueta-Solís MG, Aguilar CN, Pintor-Ibarra LF, Chávez-González M, Rojas-Molina R, Wong-Paz JE, … Rutiaga-Quiñones JG (2018). Inhibición de la oxidación de lípidos y constituyentes fenólicos relacionados en la madera y la corteza de tres especies de encino (Quercus candicans, Q. laurina y Q. rugosa). [Inhibition of lipid oxidation and related phenolic constituents in the wood and bark of three oak species (Quercus candicans, Q. laurina and Q. rugosa)]. Agrociencia 52(5):757-766.

Asghari M, Aghdam MS (2010). Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Science & Technology 21(10):502-509. https://doi:10.1016/j.tifs.2010.07.009

Baldet P, Bres C, Okabe Y, Mauxion JP, Just D, Bournonville C, ... Rothan C (2013). Investigating the role of vitamin C in tomato through TILLING identification of ascorbate-deficient tomato mutants. Plant Biotechnology 30(3):309-314. https://doi:10.5511/plantbiotechnology.13.0622b

Chen Y, Cui J, Li G, Yuan M, Zhang Z, Yuan S, Zhang H (2016). Effect of salicylic acid on the antioxidant system and photosystem II in wheat seedlings. Biologia Plantarum 60(1):139-147. https://doi.org/10.1007/s10535-015-0564-4

De la Rosa-Rodríguez R, Lara-Herrera A, Lozano-Gutiérrez J, Padilla-Bernal LE, Avelar-Mejía JJ, Castañeda-Miranda R (2016). Rendimiento y calidad de tomate en sistemas hidropónicos abierto y cerrado. [Yield and quality of tomato in open and closed hydroponic systems]. Revista Mexicana de Ciencias Agrícolas (17):3439-3452.

Elwan MWM, El-Hamahmy MAM (2009). Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Scientia Horticulturae 122(4):521-526. https://doi:10.1016/j.scienta.2009.07.001

Ennab HA, El-Shemy MA, Alam-Eldein SM (2020). Salicylic acid and putrescine to reduce post-harvest storage problems and maintain quality of murcott mandarin fruit. Agronomy 10(1):115. https://doi.org/10.3390/agronomy10010115

Fish WW, Perkins-Veazie P, Collins JK (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis 15:309-317. https://doi.org/10.1006/jfca.2002.1069

Hayat S, Hasan SA, Fariduddin Q, Ahmad A (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions 3(4):297-304. https://doi:10.1080/17429140802320797

Hayat Q, Hayat S, Irfan M, Ahmad A (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany 68(1):14-25. https://doi:10.1016/j.envexpbot.2009.08.005

Hsu CL, Chen W, Weng YM, Tseng CY (2003). Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chemistry 83(1):85-92. https://doi.org/10.1016/S0308-8146(03)00053-0

Islam MZ, Mele MA, Choi KY, Baek JP, Kang H (2018). Salicylic acid in nutrient solution influence the fruit quality and shelf life of cherry tomato grown in hydroponics. Sains Malaysiana 47(3):537-542. https://doi.org/10.17576/jsm-2018-4703-14

Islam MZ, Mele MA, Baek JP, Kang HM (2018). Iron, iodine and selenium effects on quality, shelf life and microbial activity of cherry tomatoes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(2):388-392. https://doi:10.15835/nbha46211012

Javaheri M, Mashayekhi K, Dadkhah A, Tavallaee FZ (2012). Effects of salicylic acid on yield and quality characters of tomato fruit (Lycopersicum esculentum Mill.). International Journal of Agriculture and Crop Sciences 4(16):1184-1187.

Kant K, Arora A (2014). Effects of salicylic acid on postharvest physiology of tomato. Indian Journal of Horticulture 71(2):247-252.

Kong JQ (2015). Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Advances 5(77):62587-62603. https://doi:10.1039/C5RA08196C

Larqué-Saavedra A, Martin-Mex R (2007). Effects of salicylic acid on the bioproductivity of plants. In: Hayat S, Ahmad A (Eds). Salicylic Acid-A Plant Hormone. Springer: Dordrecht, Netherlands pp 15-23.

Larqué-Saavedra A, Martín-Mex R, Nexticapan-Garcéz Á, Vergara-Yoisura S, Gutiérrez-Rendón M (2010). Efecto del ácido salicílico en el crecimiento de plántulas de tomate (Lycopersicon esculentum Mill.). [Effect of salicylic acid on the growth of tomato (Lycopersicon esculentum Mill.) seedlings]. Revista Chapingo Serie Horticultura 16(3):183-187.

Li JL, Sun DW, Cheng JH (2016). Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: a review. Comprehensive Reviews in Food Science and Food Safety 15(5):897-911. https://doi.org/10.1111/1541-4337.12217

Mirdehghan SH, Ghotbi F (2014). Effects of salicylic acid, jasmonic acid, and calcium chloride on reducing chilling injury of pomegranate (Punica granatum L.) fruit. Journal of Agricultural Science and Technology 16:163-173.

Mohamed R, Abdelbaset AK, Abd-Elkader D (2018). Salicylic acid effects on growth, yield, and fruit quality of strawberry cultivars. Journal of Medicinally Active Plants 6(2):1-11. https://scholarworks.umass.edu/jmap/vol6/iss2/2

Mora-Herrera ME, Peralta-Velázquez J, López-Delgado HA, García-Velasco R, González-Díaz JG (2011). Efecto del ácido ascórbico sobre crecimiento, pigmentos fotosintéticos y actividad peroxidasa en plantas de crisantemo. [Effect of ascorbic acid on growth, photosynthetic pigments and peroxidase activity of Chrisantemum plants]. Revista Chapingo Serie Horticultura 17(2):73-81.

Moreno-Velázquez D, Cruz-Romero W, García-Lara E, Ibañez-Martínez A, Barrios-Díaz JM, Barrios-Díaz B (2013). Cambios fisicoquímicos poscosecha en tres cultivares de pepino con y sin película plástica. [Postharvest physicochemical changes in three cucumber cultivars with and without plastic film]. Revista Mexicana de Ciencias Agrícolas 4(6):909-920.

Padayatt S, Daruwala R, Wang Y, Eck PK, Song J Koh WS, Levine M (2001). Vitamin C: from molecular actions to optimum intake. In: Cadenzas E, Packer L (Eds). Handbook of Antioxidants. CRC press. Washington DC, USA pp 117-145.

Pandey P, Irulappan V, Bagavathiannan MV, Senthil-Kumar M (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science 8:537. https://doi.org/10.3389/fpls.2017.00537

Peyro H, Mirjalili SA, Kavoosi B (2017). Effect of salicylic acid and aloe vera gel on postharvest quality of table grapes (Vitis Vinifera). Trakia Journal of Sciences 15(2):154-159. https://doi:10.15547/tjs.2017.02.009

Preciado-Rangel P, Salas-Pérez L, Gallegos-Robles MA, Ayala-Garay AV, Fortis-Hernández M, Murillo-Amador B (2018). Increasing doses of potassium increases yield and quality of muskmelon fruits under greenhouse. Horticultura Brasileira 36(2):184-188. https://doi.org/10.1590/hb.v36i2.1254

Preciado-Rangel P, Reyes-Pérez J, Ramírez-Rodríguez S, Salas-Pérez L, Fortis-Hernández M, Murillo-Amador B, Troyo-Diéguez E (2019). Foliar aspersion of salicylic acid improves phenolic and flavonoid compounds, and also the fruit yield in cucumber (Cucumis sativus L.). Plants 8(2): 44. https://doi:10.3390/plants8020044

Przybylska S (2020). Lycopene–a bioactive carotenoid offering multiple health benefits: a review. International Journal of Food Science & Technology 55(1):11-32. https://doi.org/10.1111/ijfs.14260

Radwan DEM, Mohamed AK, Fayez KA, Abdelrahman AM (2019). Oxidative stress caused by Basagran® herbicide is altered by salicylic acid treatments in peanut plants. Heliyon 5(5):e01791. https://doi:10.1016/j.heliyon.2019.e0179

Rai R (2020). Heat stress in crops: Driver of climate change impacting global food supply. In: Singh P, Singh R, Srivastava V (Eds). Contemporary environmental issues and challenges in era of climate change. Springer, Singapore pp 99-117. https://doi.org/10.1007/978-981-32-9595-7_5

Ríos-Osorio O, Chávez-Servia JL, Carrillo-Rodríguez JC (2014). Producción tradicional y diversidad de tomate (Solanum lycopersicum L.) nativo: un estudio de caso en Tehuantepec-Juchitán, México. [Traditional production and diversity of native tomato (Solanum lycopersicum L.): a study case in Tehuantepec-Juchitán, Mexico]. Agricultura, Sociedad y Desarrollo 11(1)35-51.

Rodríguez-Carpena JG, Morcuende D, Andrade MJ, Kylli P, Estévez M (2011). Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. Journal of Agricultural and Food Chemistry 59(10):5625-5635. https://doi:10.1021/jf1048832

Semida WM, Abd El-Mageed TA, Mohamed SE, El-Sawah NA (2017). Combined effect of deficit irrigation and foliar-applied salicylic acid on physiological responses, yield, and water-use efficiency of onion plants in saline calcareous soil. Archives of Agronomy and Soil Science 63(9):1227-1239. https://doi.org/10.1080/03650340.2016.1264579

Saeed N, Khan MR, Shabbir M (2012). Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary and Alternative Medicine 12(1):221. https://doi:10.1186/1472-6882-12-221

Sahu RK, Agrawal AK, Sinha G (2016). Extension of shelf life of custard apple (Annona squamosa L.) through post-harvest treatments. Madras Agricultural Journal 103:62-66.

Shah MS, Wang Y, Shu S, Zhong M, Chen Z, Wu J, Sun J, Guo S (2019). Exogenous salicylic acid increases the heat tolerance in tomato (Solanum lycopersicum L.) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Scientia Horticulturae 247:421-429. https://doi:10.1016/j.scienta.2018.12.047

Singleton V, Salgues M, Zaya J, Trousdale E (1985). Caftaric acid disappearance and conversion to products of enzymic oxidation in grape must and wine. American Journal of Enology and Viticulture 36(1):50-56.

SAS, Institute (2004). SAS/STAT User's Guide. Version 9.1. SAS Institute. Cary, NC, USA.

Surh YJ (2008). NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pacific Journal of Clinical Nutrition 17(1):269-272.

Steiner AA (1984). The universal nutrient solution. In: Proceedings of the 6th International Congress on Soilless Culture. Lunteren, Netherlands pp 633-649.

Tareen MJ, Abbasi NA, Hafiz IA (2012). Postharvest application of salicylic acid enhanced antioxidant enzyme activity and maintained quality of peach cv. “Flordaking” fruit during storage. Scientia Horticulturae 142:221-228. https://doi.org/10.1016/j.scienta.2012.04.027

Tokunaga T, Miyahara K, Tabata K, Esaka M (2004). Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase. Planta 220(6):854-863. https://doi:10.1007/s00425-004-1406-3

Tounekti T, Hernández I, Munné-Bosch S (2013). Salicylic acid biosynthesis and role in modulating terpenoid and flavonoid metabolism in plant responses to abiotic stress. In: Hayat S, Ahmad A, Alyemeni M (Eds). Salicylic acid. Springer, Dordrecht pp 141-162.

Wada KC, Takeno K (2013). Salicylic acid-mediated stress-induced flowering. In: Hayat S, Ahmad A, Alyemeni M (Eds). Salicylic acid. Springer, Dordrecht pp 163-182.

Wang Z, Ma L, Zhang X, Xu L, Cao J, Jiang W (2015). The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Horticulturae 181:113-120. https://doi.org/10.1016/j.scienta.2014.10.055

Wen T, Hao YJ, An XL, Sun HD, Li YR, Chen X, … Lian ML (2019). Improvement of bioactive compound accumulation in cell cultures of Orostachys cartilaginous A. Bor. through elicitation with salicylic acid and effect of cell extract on bioactive activity. Industrial Crops and Products 139:111570. https://doi:10.1016/j.indcrop.2019.111570

Wilson DW, Nash P, Buttar HS, Griffiths K, Singh R, De Meester F, … Takahashi T (2017). The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: an overview. Antioxidants 6(4):81. https://doi.org/10.3390/antiox6040081

Wolfe KL, Liu RH (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agricultural and Food Chemistry 55(22):8896-8907. https://doi:10.1021/jf0715166

Xu M, Dong J, Wang H, Huang L (2009). Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor‐induced flavonol glycoside accumulation of Ginkgo biloba cells. Plant, Cell & Environment 32(8):960-967. https://doi.org/10.1111/j.1365-3040.2009.01976.x

Yactayo-Chang JP, Acosta-Gamboa LM, Nepal N, Lorence A (2017). The role of plant high-throughput phenotyping in the characterization of the response of high ascorbate plants to abiotic stresses. In: Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, Lorence A (Eds). Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham pp 321-354.

Yusuf M, Hayat S, Alyemeni MN, Fariduddin Q, Ahmad A (2013). Salicylic acid: physiological roles in plants. In: Hayat S, Ahmad A, Alyemeni M (Eds). Salicylic acid. Springer, Dordrecht pp 15-30.

Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Downloads

Published

2020-06-30

How to Cite

SARIÑANA-ALDACO, O. ., SANCHEZ-CHAVEZ, E. ., FORTIS-HERNÁNDEZ, M., GONZÁLEZ-FUENTES, J. A., MORENO-RESENDEZ, A. ., ROJAS-DUARTE, A. ., & PRECIADO-RANGEL, P. . (2020). Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 882–892. https://doi.org/10.15835/nbha48211914

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48211914

Most read articles by the same author(s)

<< < 1 2