Effect of titanium foliar applications on tomato fruits from plants grown under salt stress conditions

Authors

  • Victor H. CARBAJAL-VÁZQUEZ College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo, State of Mexico (MX)
  • Fernando C. GÓMEZ-MERINO College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo, State of Mexico (MX)
  • José A. HERRERA-CORREDOR College of Postgraduates in Agricultural Sciences Campus Córdoba, Manuel León, Amatlán de los Reyes, Veracruz (MX)
  • Adriana CONTRERAS-OLIVA College of Postgraduates in Agricultural Sciences Campus Córdoba, Manuel León, Amatlán de los Reyes, Veracruz (MX)
  • Gabriel ALCÁNTAR-GONZÁLEZ College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo, State of Mexico (MX)
  • Libia I. TREJO-TÉLLEZ College of Postgraduates in Agricultural Sciences Campus Montecillo, Montecillo, State of Mexico (MX)

DOI:

https://doi.org/10.15835/nbha48211904

Keywords:

abiotic stress; beneficial elements; hormesis; salinity; Solanaceae; Solanum lycopersicum

Abstract

Salt stress affects plant metabolism, while beneficial elements such as titanium (Ti) may stimulate adaptive responses to mitigate salt stress. Here we evaluated the main effects of sodium chloride (NaCl 0, 50 and 100 mM) in the nutrient solution, and of titanium foliar spray (Ti 0.75 and 150 mg L-1), as well as the interaction of these study factors, on tomato cv. ‘Rio Supremo’ performance in greenhouse. Plants were treated with NaCl during 80 d through automated drip irrigation; while eight Ti foliar sprayings were applied with a manual sprayer, at intervals of 10 d each. Yield and quality parameters of fruits were evaluated in the second cluster. NaCl reduced yield parameters, pH value and increased the titratable acidity (TA), electrical conductivity (EC), and total soluble solids (TSS), as well as the TSS/TA ration in the fruits. Ti did not affect yield parameters, though it reduced the pH and increased the TSS/TA ratio of fruits. NaCl and Ti have differential effects on fruit quality as separate factors, while the interaction of both factors revealed that Ti effects dependent on the presence of NaCl and its level in the nutrient solution. In conclusion, Ti did not mitigate the negative effects of saline stress on the evaluated yield parameters, but importantly, with moderate levels of NaCl in the nutrient solution (50 mM), Ti increased EC, TA and TSS of fruits.

References

Agathokleous E, Calabrese EJ (2019). Hormesis: The dose response for the 21st century: The future has arrived. Toxicology 425:152249. https://doi.org/10.1016/j.tox.2019.152249

Agathokleous E, Kitao M, Calabrese EJ (2019). Hormesis: a compelling platform for sophisticated plant science. Trends in Plant Science 24(4):318‐327. https://doi.org/10.1016/j.tplants.2019.01.004

Bai Y, Dougherty L, Cheng L, Xu K (2015). A co-expression gene network associated with developmental regulation of apple fruit acidity. Molecular Genetics and Genomics 290(4):1247-1263. https://doi.org/10.1007/s00438-014-0986-2

Banerjee A, Roychoudhury A (2018). Role of beneficial trace elements in salt stress tolerance of plants. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (Eds). Plant nutrients and abiotic stress tolerance. Springer Nature, Singapore pp 377-390. https://doi.org/10.1007/978-981-10-9044-8_16

Beckles DM (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology 63(1):129-140. https://doi.org/10.1016/j.postharvbio.2011.05.016

Boland FE (1990). Fruits and fruit products. In: Helrich K (Ed). Official Methods of Analysis of the Association of Analytical Methods (AOAC), Virginia, USA pp 910-911.

Calabrese EJ, Baldwin LA (2001). U-shaped dose-responses in biology, toxicology, and public health. Annual Review of Public Health 22:15-33. https://doi.org/10.1146/annurev.publhealth.22.1.15

Carvajal M, Frutos MJ, Giménez JL, Alcaraz CF, Martínez SF (1992). Efecto foliar de titanio a plantas de pimiento pimentonero. Influencia sobre el balance de nutrición en pericarpio de fruto [Foliar effect of titanium on paprika pepper plants. Influence on nutrition balance in fruit pericarp]. Suelo y Planta 12:551-562.

Carvajal M, Martínez-Sánchez F, Alcaraz CF (1994). Effect of Ti (IV) on some indicator of physiological activity in Capsicum annuum L. Journal of Horticultural Science 69(3):427-432. https://doi.org/10.1080/14620316.1994.11516471

Casierra-Posada F, Aguilar-Avendaño OE (2008). Quality of tomato fruits (Solanum lycopersicum L.) harvested at different maturity stages. Agronomía Colombiana 26(2):300-307.

Choi HG, Moon BY, Bekhzod K, Park KS, KwonJK, Lee JH, … Kang NJ (2015). Effects of foliar fertilization containing titanium dioxide on growth, yield and quality of strawberries during cultivation. Horticulture, Environment, and Biotechnology 56:575-581. https://doi.org/10.1007/s13580-015-0023-3

Colmenero-Flores JM, Rosales MA (2013). Interaction between salt and heat stress: when two wrongs make a right. Plant, Cell and Environment 37(5):1042-1045. https://doi.org/10.1111/pce.12229

Cruz CE, Sandoval VM, Volke HVH, Can CA, Sánchez EJ (2012). Mixtures of substrates and nutrient solution concentration effect on growth and yield of tomato. Revista Mexicana de Ciencias Agrícolas 3:1361-1373.

FAO (2016). Extent of salt-affected soils. FAO Soils Portal. Retrieved 2020 April 21 from http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/

García-Sahagún ML, Martínez-Juárez V, Avendaño-López AN, Padilla-Sahagún MC, Izquierdo-Oviedo H (2009). Acción de oligosacáridos en el rendimiento y calidad de tomate [Action of oligosaccharides on the yield and quality of tomato]. Revista Fitotecnia Mexicana 32(4):295-301.

Georgé S, Tourniaire F, Gautier H, Goupy P, Rock E, Caris-Veyrat C (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry 124(4):1603-1611. https://doi.org/10.1016/j.foodchem.2010.08.024

Getinet H, Seyoum T, Woldetsadik K (2008). The effect of cultivar, maturity stage and storage environment on quality of tomatoes. Journal of Food Engineering 87(4):467-478. https://doi.org/10.1016/j.jfoodeng.2007.12.031

Giordano LDB, Silva JBC, Barbosa V (2000). Escolha de cultivares e plantio [Selection of cultivars and planting]. In: Silva JBC, Giordano LDB (Eds). Tomate para processamento industrial. Embrapa Hortaliças CNPH, Brazil pp 36-59.

Gómez-Merino FC, Trejo-Téllez LI (2018). The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In: Vats S (Ed). Biotic and abiotic stress tolerance in plants. Springer Nature, Singapore pp 137-172. https://doi.org/10.1007/978-981-10-9029-5_ 6

González-Agüero M, Tejerina-Pardo L, Zamudio MS, Contreras C, Undurraga P, Defilippi BG (2016). The unusual acid-accumulation behavior during ripening of cherimoya (Annona cherimola Mill.) is linked to changes in transcription and enzyme activity related to citric and malic acid metabolism. Molecules 21(5):398. https://doi.org/10.3390/molecules21050398

Hernández-Suárez M, Rodríguez-Rodríguez E, Díaz-Romero C (2008). Analysis of organic acid content in cultivars of tomato harvested in Tenerife. European Food Research and Technology 226(3):423-435. https://doi.org/10.1007/s00217-006-0553-0

Hrubý M, Cigler P,Kuzel S (2002). Contribution to understanding the mechanism of titanium action in plant. Journal of Plant Nutrition 25(3):577-598. https://doi.org/10.1081/PLN-120003383

Huang W, Liao S, Lv H, Khaldun ABM, Wang Y (2015). Characterization of the growth and fruit quality of tomato grafted on a woody medicinal plant, Lycium chinense. Scientia Horticulturae 197(2015):447-453. https://doi.org/10.1016/j.scienta.2015.10.005

Isayenkov SV, Maathuis FJM (2019). Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science 10:80. https://doi.org/10.3389/fpls.2019.00080

Jiang F, Lopez A, Jeon S, Tonetto de Freitas S, Yu Q, Wu Z, … Mitcham E (2019). Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Horticulture Research 6:17. https://doi.org/10.1038/s41438-018-0105-3

Jones JBJr (2007). Tomato Plant Culture: In the field, greenhouse, and home garden. CRC Press (2nd ed), Washington, D. C., USA.

Kaewklin P, Siripatrawan U, Suwanagul A, Lee YS (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules 112:523-529. https://doi.org/10.1016/j.ijbiomac.2018.01.124

Kleiber T, Markiewicz B (2013). Application of “Tytanit” in greenhouse tomato growing. Acta Scientiarum Polonorum Hortorum Cultus 12(3):117-126.

Lemmens, P. 2010. U-shaped curve. In: Salkind N (Ed). Encyclopedia of Research Design, Thousand Oaks, CA: SAGE Publications. pp 1587-1589. https://doi.org/10.4135/9781412961288.n485

Lyu S, Wei X, Chen J, Wang C, Wang X, Pan D (2017). Titanium as beneficial element for crop production. Frontiers in Plant Science 8:597. https://doi.org/10.3389/fpls.2017.00597

Maneerat C, Hayata Y (2006). Efficiency of TiO2 photocatalytic reaction on delay of fruit ripening and removal of off-flavors from the fruit storage atmosphere. Transactions of the American Society of Agricultural and Biological Engineers 49(3):833-837. https://doi.org/10.13031/2013.20467

Maneerat C, Hayata Y, Egashira N, Sakamoto K, Hamai Z, Kuroyanagi M (2003). Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetable storage. Transactions of the American Society of Agricultural Engineers 46(3):725-730. https://doi.org/10.13031/2013.13574

Martínez SF, Nunez M, Amoros A, Gimenez JL, Alcaraz CF (1993). Effect of titanium leaf spray treatments on ascorbic acid levels of Capsicum annuum L. fruits. Journal of Plant Nutrition 16(5):975-981. https://doi.org/10.1080/01904169309364586

Mattson MP (2007). Hormesis defined. Ageing Research Reviews 7(1):1-7. https://doi.org/10.1016/j.arr.2007.08.007

Rezende-Fontes PC, Arruda-Sampaio R, Luiz-Finger F (2000). Fruit size, mineral composition and quality of trickle-irrigated tomatoes as affected by potassium rates. Pesquisa Agropecuaria Brasileira 35(1):21-25. https://doi.org/10.1590/S0100-204X2000000100003

Rodríguez-Ortega WM, Martínez V, Nieves M, Simón I, Lidón JC, Fernández-Zapata JJ, … García-Sánchez F (2019). Agricultural and physiological responses of tomato plants grown in different soilless culture systems with saline water under greenhouse conditions. Scientific Reports 9:6733. https://doi.org/10.1038/s41598-019-42805-7

Sarmiento C, Daood H, Pais I, Biacs PA (1995). Effect of titanium ascorbate on the lipoxygenase pathway of tomato and red pepper seedlings. Journal of Plant Nutrition 18(6):1291-1299. https://doi.org/10.1080/01904169509364980

SAS (2011). Base SAS® 9.3 Procedures Guide: Statistical Procedures, SAS Institute Inc., Cary, NC, USA.

Shallan, MA, Hassan HMM, Namich AA, Ibrahim AA (2016). Biochemical and physiological effects of TiO2 and SiO2 nanoparticles on cotton plant under drought stress. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(4):1540-1551.

Simon L, Balogh A, Hajdu F, Albert J, Pais I (1991). Titánkezelés hatása a paradicsom szénhidrát-tartalmára és foszfo-fruktokináz enzimének aktivitására [Effect of titanium treatment on carbohydrate content and phosphofructokinase enzyme activity in tomatoes]. Zöldségtermesztési Kutató Intézet Bulletinje 24:117-125.

Skupién S, Oszmiańki J (2007). Influence of titanium treatment on antioxidant content and antioxidant activity of strawberries. Acta Scientiarum Polonorum, Technologia Alimentaria 6(4):83-94.

Steiner A (1984). The universal nutrient solution. In: Proceedings of the 6th International Congress on Soilless Culture. International Society for Soilless Culture, Lunteren, The Netherlands pp 633-649.

Tigist M, Workneh TS, Woldetsadik K (2013). Effects of variety on the quality of tomato stored under ambient conditions. Journal of Food Science and Technology 50(3):477-486. https://doi.org/10.1007/s13197-011-0378-0

Trejo-Téllez LI, Gómez-Merino FC, Alcántar-González G (2016). Elementos benéficos: Potencialidades y limitantes [Beneficial elements: Potentialities and limitations]. In: Alcántar-González G, Trejo-Téllez LI, Gómez-Merino FC (Eds). Nutrición de Cultivos [Crop Plant Nutrition], Editorial del Colegio de Postgraduados, México pp 57-101.

Trejo-Téllez LI, Ramírez-Martínez M, Gómez-Merino FC, García-Albarado JC, Baca-Castillo GA, Tejeda-Sartorius O (2013). Physical and chemical evaluation of volcanic rocks and its use for tulip production. Revista Mexicana de Ciencias Agrícolas 5:863-873.

UPOV (2018). Guidelines for the conduct of test for distinctness, uniformity, and stability: tomato. Union for the Protection of New Varieties of Plants. Retrieved 2020 Abril 11 from https://www.upov.int/edocs/tgdocs/en/tg044.pdf

Veličković V (2015) What everyone should know about statistical correlation. American Scientist 103(1):26-29. https://doi.org/10.1511/2015.112.26

Verlent I, Van Loey A, Smout C, Duvetter T, Hendrickx ME (2004) Purified tomato polygalacturonase activity during thermal and high-pressure treatment. Biotechnology and Bioengineering 86(1):63-71. https://doi.org/10.1002/bit.10920

Wang CX, Wang L, McQueen-Mason SJ, Pritchard J, Thomas CR (2008). pH and expansin action on single suspension-cultured tomato (Lycopersicon esculentum) cells. Journal of Plant Research 121:527-534. https://doi.org/10.1007/s10265-008-0176-6

Wichelns D, Qadir M (2014). Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agricultural Water Management 157:31-38. https://doi.org/10.1016/j.agwat.2014.08.016

Wojcik, P, Klamkowski K (2005). “Szampion” apple tree response to foliar titanium application. Journal of Plant Nutrition 27(11):2033-2046. https://doi.org/10.1081/PLN-200030108

Wongmetha O, Ke LS, Liang YS (2015). The changes in physical, bio-chemical, physiological characteristics and enzyme activities of mango cv. ‘Jinhwang’ during fruit growth and development. NJAS-Wageningen Journal of Life Science 72-73:7-12. https://doi.org/10.1016/j.njas.2014.10.001

Wu M, Kubota Ch (2008). Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Scientia Horticulturae 116(2):122-129. https://doi.org/10.1016/j.scienta.2007.11.014

Zhang P, Senge M, Dai Y (2016). Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Reviews in Agricultural Science 4:46-55. https://doi.org/10.7831/ras.4.46

Downloads

Published

2020-06-30

How to Cite

CARBAJAL-VÁZQUEZ, V. H., GÓMEZ-MERINO, F. C., HERRERA-CORREDOR, J. A., CONTRERAS-OLIVA, A., ALCÁNTAR-GONZÁLEZ, G., & TREJO-TÉLLEZ, L. I. (2020). Effect of titanium foliar applications on tomato fruits from plants grown under salt stress conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 924–937. https://doi.org/10.15835/nbha48211904

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48211904

Most read articles by the same author(s)

1 2 > >>