Cultivar and year effects on the chemical composition of elderberry (Sambucus nigra L.) fruits


  • Virág CSORBA Szent István University, Department of Pomology, 29-43, Villányi út, Budapest (HU)
  • Magdolna TÓTH Almakúti Ltd., 0171/21 hrsz., Zalaszántó (HU)
  • Anna M. LÁSZLÓ Szent István University, Department of Biometrics and Agrarinformatics, 29-43, Villányi út, Budapest (HU)
  • Levente KARDOS Szent István University, Department of Soil Seince and Water Management, 29-43, Villányi út, Budapest (HU)
  • Szilvia KOVÁCS Research Institute for Fruitgrowing and Ornamentals, National Agricultural Research and Innovation Centre, Budapest (HU)



anthocyanins; antioxidant activity; polyphenols; soluble solids; titratable acidity


Due to their outstanding anthocyanin content, elderberries are mainly used in the food industry to produce pigment concentrations. Thanks to the increase in demand, elderberry is grown on ever greater areas in Hungary and in neighbouring countries. Cultivar use, however, is very one-sided, being practically restricted to ‘Haschberg’. As this cultivar has many negative properties, growers have begun to plant and test new cultivars. When determining the commodity value of cultivars, it is important to examine not only the physical traits of the fruit, but also their main chemical parameters. In the present experiment the chemical properties (soluble solids and titratable acid content, total polyphenol and anthocyanin content, antioxidant capacity) of the fruit of 11 elderberry cultivars (‘Haidegg 13’, ‘Haidegg 17’, ‘Haschberg’, K3, ‘Korsör’, ‘Samdal’, ‘Samidan’, ‘Samocco’, ‘Sampo’, ‘Samyl’, ‘Weihenstephan’) were analysed in three consecutive years. In addition to the comparative evaluation of the cultivars, this work also aimed to discover correlations between the components and to study the effect of the year on the chemical composition of the fruit. Significant differences were found between the cultivars for the soluble solids content (F(10;8.74)=9.71; p=0.001), the titratable acid content (F(10;22)=7.91; p<0.001), the polyphenol content (F(10;22)=9.77; p<0.001), the anthocyanin content (F(10;8.52)=36.18; p<0.001) and the antioxidant capacity (F(10;22)=3.61; p=0.006). A year effect was proved for the water-soluble solids content (F(2;30)=4.02; p=0.028) and the antioxidant capacity (F(2;30)=5.21; p=0.011). Among the chemical properties, a significant positive linear correlation was only detected between the polyphenol and anthocyanin contents (r=0.91; p<0.001). Among the cultivars, ‘Sampo’, ‘Samidan’ and ‘Weihenstephan’ exhibited outstanding polyphenol and anthocyanin contents. The soluble solids content and antioxidant capacity of ‘Haidegg 17’ were also promising.


Akbulutu M, Ercisli S, Tosun M (2009). Physico-chemical characteristics os fome wild grown European elderberry (Sambucus nigra L.) genotypes. Pharmacognosy Magazine 5:320-323.

Benzie IF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry 239(1):70-76.

Bolling BW, McKay DL, Blumberg JB (2010). The phytochemical composition and antioxidant actions of tree nuts. Asian Pacific Journal of Clinical Nutrition 19(1):117-123.

Cejpek K, Malousková I, Konecny M, Velísek J (2009). Antioxidant activity in variously prepared elderberry foods and supplements. Czech Journal of Food Sciences 27:45-48.

Charlebois D, Byers PL, Finn CE, Thomas AL (2010). Elderberry: botany, horticulture, potential. Horticultural Reviews 37:213-280.

Connor AM, Luby JJ, Finn CE, Hancock JF (2002). Genotypic and environmental variation in antioxidant activity among blueberry cultivars. Acta Horticulturae 574:209-213.

Csorba V, Fodor M, Kovács Sz, Tóth M (2019). Potential of Fourier transformed near-infrared (FT-NIR) spectroscopy for rapid analysis of elderberry (Sambucus nigra L.) fruits. Czech Journal of Food Sciences 37(1):21-28.

Dobson AJ (2002). An introduction to generalized linear models. (2nd ed). Chapman & Hall/CRC

Duymus HG, Göger F, Baser KHC (2014). In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chemistry 155:112-119.

Fejer J, Salamon I, Grulova D, Michalek S, Zvalova M (2015). Elderberry (Sambucus nigra) cultivation in Slovak Republic and identification and quantification of anthocyanins. Acta Horticulturae 1061:253-258.

Ferreria SS, Silva P, Silva AM, Nunes FM (2020). Effect of harvesting year and elderberry cultivar on the chemical composition and potential bioactivity: A three-year study. Food Chemistry 302:125366.

Füleki T, Francis FJ (1968). Quantitative methods for anthocyanins. II. Determination of total anthocyanin and degradation index for cranberry juice. Journal of Food Science 33:78-83.

Goncalves B, Silva AP, Moutinho-Pereira J, Bacelar E, Rosa E, Meyer AS (2007). Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chemistry 103(3):976-984.

Hang L (2014). Foundations of applied statistical methods. Springer International Publishing. Switzerland.

Hegedűs A, Balogh E, Engel R, Sipos BZ, Papp J, Blázovics A, Stefanovits-Bányai É (2008). Comparative nutrient element and antioxidant characterization of berry fruit species and cultivars grown in Hungary. American Society of Horticultural Science 43:1711-1715.

Jakobek L, Seruga M, Medvidovic-Kosanovic M, Novak I (2007). Anthocyanin content and antioxidant activity of various red fruit juices. Deutsche Lebensmittel-Rundschau 103(2):58-64.

Kaack K (1989). New varieties of elderberry (Sambucus nigra L.). Tidsskrift for Planteavl 93:59-65.

Kaack K (1990). Ripening of elderberry (Sambucus nigra L.). Tidsskrift for Planteavl 94(1):127-129.

Kaack K (1997). 'Sampo' and 'Samdal', elderberry cultivars for juice concentrates. Fruit Varieties Journal 51(1):28-31.

Kaack K, Austed T (1998). Interaction of vitamin C and flavonoids in elderberry (Sambucus nigra L.) during juice processing. Plant Foods for Human Nutrition 52:187-198.

Kaack K, Christensen LP, Hughes M, Eder R (2005). The relationship between sensory quality and volatile compouds in raw juice processed from elderberries (Sambucus nigra L.). European Food Research and Technology 221:244-254.

Kaack K, Frette XC, Christensen LP, Landbo AK, Meyer AS (2008). Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of juice. European Food Research and Technology 226:843-855.

Kaack K, Knudsen BF (2015). Horticultural production of flowers and berries of elder (Sambucus nigra) as raw material for processing of foods and pharmaceuticals. Acta Horticulturae 1061:201-208.

Knudsen BF, Kaack K (2015). A review of human health and disease claims for elderberry (Sambucus nigra) fruit. Acta Horticulturae 1061:121-134.

Kollányi L, Kollányi G, Hajdú B (2005). A fekete bodza fajtaválasztékának bővítésére alkalmas fajták és fajtajelöltek. [Cultivars and candidates for the enlargement of elderberry assortment]. In: Tóth M (Eds).

Development of variety assortments in the horticulture. Proceedings of selected papers - Lippay János Scientific Conference. 20-21, Oct, 2005, Budapest, Hungary pp 83-88.

Lee J, Finn CE (2007). Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. Journal of the Science of Food and Agriculture 87:2665-2675.

Matejicek A, Kaplan J, Matejickova J, Vespalcova M, Cetkovska J (2015). Comparison of substances in elderberry cultivars and wild elderberry. Acta Horticulturae 1074:105-109.

Mills TM, Behboudian MH, Clothier BE (1996). Preharvest and storage quality of ‘Braeburn’ apple fruit grown under water deficit conditions. New Zealand Journal of Crop and Horticultural Science 24:159-166.

Mlynarczyk K, Walkowiak-Tomczak D, Lysiakb GP (2018). Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. Journal of Functional Foods 40:377-390.

Mlynarczyk K, Walkowiak-Tomczak D, Staniek H, Kidon M, Lysiak GP (2020). The content of selected minerals, bioactive compounds and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra.

Moyer RA, Hummer KE., Finn CE, Frei B, Wrolstad RE (2002). Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry 50(3):519-525.

Möhler M, Blaschek W, Lohnwasser E, Walther E (2009). Holunder (Sambucus nigra L.). In: Hoppe B (Eds). Handbuch des Arznei- und Gewürzpflanzenbaus. Grafisches Centrum Cuno, Bernburg, Germany pp 551-561.

Netzel M, Strass G, Herbst M, Dietrich H, Bitsch R, Bitsch I, Frank T (2005). The excretion and biological antioxidant activity of elderberry antioxidants in healthy humans. Food Research International 38:905-910.

Özgen M, Scheerens JC, Reese RN, Miller RA (2010). Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. Pharmacognosy Magazine 6:198-203.

Özgen M, Tulio AZ, Chanon AM, Janakiraman N, Reese RN, Miller AR, Scheerens JC (2006). Phytonutrient accumulation and antioxidant capacity at eight developmental stages of black raspberry fruit. American Society for Horticultural Science 41:1082.

Pernkins-Veazie P, Thomas AL, Byers PL, Finn CE (2015). Fruit composition of elderberry (Sambucus spp.) genotypes grown in Oregnon and Missouri, USA. Acta Horticulturae 1061:219-224.

Ramaiya DS, Bujang JS, Zakaria MH, King WS, Shaffiq Sahrir MA (2012). Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. Journal of the Science of Food and Agriculture 93(5):1198-1205.

Remberg SF, Wold AB, Sonsteby A, Heide OM (2014). Effects of preharvest factors on berry quality. Acta Horticulturae 1017:181-187.

Safránková P (2011). Chemical composition of berries juices from some cultivars of european elder. MSc Dissertation, Brno Univertity of Technology.

Salvador AC, Rocha SM, Silvestre AJD (2015). Lipophilic phytochemicals from elderberries (Sambucus nigra L.): Influence of ripening, cultivar and season. Industrial Crops and Products 71:15-23.

Scalzo J, Politi A, Pellegrini N, Mezzetti B, Battino M (2005). Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207-213.

Schmitzer V, Veberic R, Slatnar A, Stampar F (2010). Elderberry (Sambucus nigra L.) Wine: A Product Rich in Health Promoting Compounds. Journal of Agricultural and Food Chemistry 58(18):10143-10146.

Sidor A, Gramza-Michałowska A (2015). Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food - A review Journal of Functional Foods 18:941-958.

Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144-158.

Stefanovits-Bányai É, Schiffler E, Stéger-Máté M, Sipos BZ, Hegedűs A (2004). A feketebodza (Sambucus nigra L.) beltartalmi értékeinek és antioxidáns hatásának változása az érés folyamán. [Chemical composition and antioxidant changes of black elderberry (Sambucus nigra L.) during ripening]. Olaj Szappan Kozmetika 53(1):33-36.

Stéger-Máté M, Horváth D, Ivanics J, Nótin B, Barta J, Kókai Z, Stefanovitsné Bányai É (2007). Gyümölcsnektárok előállítása antioxidáns hatású alapanyagokból [Fruit Nectars Manifacturing based on components acting antioxidant]. Alkoholmentes Italok 7(4):59-63.

Stéger-Máté M, Horváth E, Sipos BZ, Ivanics J (2002). A feketebodza (Sambucus nigra L.) összetételének vizsgálata az érés során. [Examination of ingredients of elderberry (Sambucus nigra L.] during ripening) In: Hodúr C, Faragó J, Péter Szabó I, Dani G (Eds). Proceeding of 5th International Conference on Food Science. Szeged, Hungary pp 143-144.

Szabó Z, Lakatos L, Nyéki J, Racskó J, Soltész M (2010). A gyümölcsminőséget befolyásoló fajtatulajdonságok, fiziológiai és klimatológiai tényezők vizsgálata [Examination of cultivar properties, physiological and agroclimatic factors influencing fruit quality parameters]. Retrieved 2020 February 10 from

Szalóki-Dorkó L (2016). Analytical study of elderberry anhocyanins during food technology. PhD Thesis, Szent István University, Gödöllő.

Szalóki-Dorkó L, Csizmadia Gy, Abrankó L, Stéger-Máté M (2015). Examination of anthocyanin content of some elderberry cultivars grown in Hungary. Acta Horticulturae 1061:79-88.

Thomas AL, Byers PL, Avery Jr. JD, Kaps M, Gu S (2015). Horticultural performance of eight american elderberry genotypes at three Missouri locations. Acta Horticulturae 1061:237-244.

Thomas AL, Pernkins-Veazieb P, Byersc PL, Finn C, Lee J (2013). A comparison of fruit characteristics among diverse elderberry genotypes grown in Missouri and Oregon. Journal of Berry Research 3(3):159-168.

Tiralongo E, Wee SS, Lea RA (2016). Elderberry supplementation reduces cold duration and symptoms in air-travellers: a randomized, double-blind placebo-controlled clinical trial. Nutrients 8:182.

Tolic MT, Krbavcic IP, Vujevic P, Milinovic B, Jurcevic IL, Vahcic N (2017). Effects of weather conditions on phenolic content and antioxidant capacity in juice of chokeberries (Aronia melanocarpa L.) Polish Journal of Food and Nutrition Science 67(1):67-74.

Van der Sluis AA, Dekker M, de Jager A, Jongen WMF (2001). Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. Journal of Agricultural and Food Chemistry 49:3606-3613.

Veberic R, Jakopic J, Stampar F, Schmitzer V (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry 114(2):511-515.

Vulic JJ, Vracar LO, Sumic ZM (2008). Chemical characteristics of cultivated elderberry fruit. Acta periodica technologica 39:85-90.

Wang SI, Lin HS (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry 48:140-146.

Wang SY (2006). Effect of pre-harvest conditions on antioxidant capacity in fruits. Acta Horticulturae 712:299-306.

Wang SY, Zheng W (2001). Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry 49(10):4977-4982.

Wissgott U, Bortlik K (1996). Prospects for new natural food colorants. Trends in Food Science and Technology 7(9):298-302.

Wu H, Johnson MC, Lu CH, Fritsche KL, Thomas AL, Cai Z, Greenlief CM (2015). Determination of anthocyanins and total polyphenols in a variety of elderberry juices by UPLC-MS/MS other methods. Acta Horticulturae 1061:43-51.

Wu X, Gu L, Prior RL, McKay S (2004). Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. Journal of Agricultural and Food Chemistry 52(26):7846-7856.




How to Cite

CSORBA, V., TÓTH, M., LÁSZLÓ, A. M., KARDOS, L., & KOVÁCS, S. (2020). Cultivar and year effects on the chemical composition of elderberry (Sambucus nigra L.) fruits. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 770–782.



Research Articles
DOI: 10.15835/nbha48211873