Physicochemical characteristics, minerals, phenolic compounds, and antioxidant capacity in fig tree fruits with macronutrient deficiencies

  • Carlos A. GARZA-ALONSO Universidad Autónoma de Nuevo León, Facultad de Agronomía, Francisco Villa s/n col. ExHacienda el Canadá, Gral. Escobedo, N.L.
  • Guillermo NIÑO-MEDINA Universidad Autónoma de Nuevo León, Facultad de Agronomía, Francisco Villa s/n col. ExHacienda el Canadá, Gral. Escobedo, N.L.
  • Adriana GUTIÉRREZ-DÍEZ Universidad Autónoma de Nuevo León, Facultad de Agronomía, Francisco Villa s/n col. ExHacienda el Canadá, Gral. Escobedo, N.L.
  • Josué I. GARCÍA-LÓPEZ Universidad Autónoma Agraria Antonio Narro, Departamento de Fitomejoramiento, Centro de capacitación y desarrollo en tecnología de semillas, Calzada Antonio Narro 1923 col. Buenavista, Saltillo, Coah
  • Rigoberto E. VÁZQUEZ-ALVARADO Universidad Autónoma de Nuevo León, Facultad de Agronomía, Francisco Villa s/n col. ExHacienda el Canadá, Gral. Escobedo, N.L.
  • Alfredo LÓPEZ-JIMÉNEZ Colegio de Postgraduados, Recursos Genéticos y Productividad-Fruticultura, Carretera México-Texcoco Km 36.5, Montecillo, Texcoco, Edo. de Méx.
  • Emilio OLIVARES-SÁENZ Universidad Autónoma de Nuevo León, Facultad de Agronomía, Francisco Villa s/n col. ExHacienda el Canadá, Gral. Escobedo, N.L.
Keywords: condensed tannins; Ficus carica L.; flavonoids; fruit quality; plant nutrition

Abstract

In this research, effects of macronutrient deficiency (N, P, K, Ca, and Mg) on the production, physicochemical characteristics, minerals, phenolic compounds, and antioxidant capacity of fig fruits (Ficus carica L.) were evaluated using the missing element technique in a controlled hydroponic system under greenhouse conditions. N-deficient plants had no fruit production, while fruits with absence of P, K, and Ca were the most affected in terms of size, weight, and physicochemical characteristics. On the other hand, the concentration of minerals was significantly different (p<0.05), finding some interactions of synergism and antagonism between ions. Phenolic compounds increased in fruits with P and Ca deficiency, as well as the antioxidant capacity DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) in the fruits of the treatment -Ca. Regarding the FRAP (ferric reducing antioxidant power) test, higher values were found for all treatments without minerals (-P, -K, -Ca, and -Mg) with respect to the control. The results obtained explain the responses of the fig tree subjected to nutritional deficiencies.

***

In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. The article is to be paginated when the complete issue will be ready for publishing (Volume 48, Issue 3, 2020). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue.

Metrics

Metrics Loading ...

References

Acosta EBA, Gutiérrez UJA, Serna SSO (2013). Bound phenolics in foods: a review. Food Chemistry 152:46-55. http://doi.org/10.1016/j.foodchem.2013.11.093

Agustí M (2010). Fruticultura. 2nd ed. Ed. Mundi-Prensa, Madrid, España pp 507. ISBN 978-84-8476-398-7.

Ahmad P, Abdel LAA, Abd AEF, Hashem A, Sarwat M, Anjum NA, Gucel S (2016). Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Frontiers in Plant Science 7:513. https://doi.org/10.3389/fpls.2016.00513

Alcántar GG, Trejo TLI, Fernández PL, Rodríguez MM (2016). Elementos esenciales. In: Alcántar GG, Trejo TLI, Gómez M (Eds). Nutrición de cultivos, 2nd ed. Colegio de Postgraduados: México City, Méx., pp 23-55. ISBN: 978-607-715-324-5.

Alcántar GG, Sandoval VM (1999). Handbook chemical analysis of vegetal tissue. Especial Publication No. 10. Mexican Society of Soil Science (In Spanish). Chapingo, Estado de México, México.

AOAC (2000). Vitamin and other nutrient. In: Hoerwitz W (Ed). Official Methods of Analysis of the Association of Official Analytical Chemists International, 17th ed. AOAC International: Gaithersburg, MD, USA.

Badgujar SB, Patel VV, Bandivdekar AH, Mahajan RT (2014). Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharmaceutical Biology 52(11):1487-1503. https://doi.org/10.3109/13880209.2014.892515

Bremner JM (1965). Total nitrogen. In: Norman AG (Ed). Methods for Soil Analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Inc. Madison, Wisconsin, USA, pp 1149-1178.

Capato LT, Mendoca FMS, Paes MLV, Souza GY, Pires PJA, Franca LK (2019). Visual symptoms of macronutrient and boron deficiency in Cymbopogon citratus. Journal of Plant Nutrition 13:1430-1438. https://doi.org/10.1080/01904167.2019.1628974

Chandra SB, Karmoker JL (2011). Effects of phosphorus deficiency on accumulation of biochemical compounds in lentil (Lens culinaris M.) Bangladesh Journal of Botany 40(1):23-27. https://doi.org/10.3329/bjb.v40i1.7992

ColorHexa (2019). Color Encyclopedia: Information and Conversion. Computer Software. Retrieved 2019 January 31 from https://www.colorhexa.com

Commission Internationale De L’ecleirage (2004). CIE 15: Technical Report: Colorimetry, Commission Internationale De L’ecleirage, 3rd ed.; CIE: Vienna, Austria.

Crisosto H, Ferguson L, Bremer V, Stover E, Colelli G (2011). Fig (Ficus carica L.) In: Yahia EM (Ed). Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing, Elsevier. Cambridge, U.K., pp 134-158. https://doi.org/10.1533/9780857092885.134

Crisosto CH, Bremer V, Ferguson L, Crisosto GM (2010). Evaluating quality attributes of four fresh fig (Ficus carica L.) cultivars harvested at two maturity stages. HortScience 45(4):707-710. https://doi.org/10.21273/HORTSCI.45.4.707

Davarpanah S, Tehranifar A, Abadía J, Val J, Davarynejad G, Aran M, Khorassani R (2017). Foliar calcium fertilization reduces fruit cracking in pomegranate (Punica granatum cv. Ardestani). Scientia Horticulturae 230:86-91. https://doi.org/10.1016/j.scienta.2017.11.023

Deepa P, Sowndhararajan K, Kim S, Jin PS (2018). A role of Ficus species in the management of diabetes mellitus: A review. Journal of Ethnopharmacology 215:210-232. https://doi.org/10.1016/j.jep.2017.12.045

Esref I M, Aksoy U, Okur B, Ongun A, Tepecik M (2008). Effect of calcium-based fertilization on dried fig (Ficus carica L. cv. Sarilop) yield and quality. Scientia Horticulturae 118(4):308-312. https://doi.org/10.1016/j.scienta.2008.06.024

Farhat N, Elkhouni A, Zorrig W, Smaoui A, Abdelly C, Rabhi M (2016). Effects of magnesium deficiency on photosynthesis and carbohydrate partitioning. Acta Physiologiae Plantarum 145. https://doi.org/10.1007/s11738-016-2165-z

Food and Agriculture Organization (FAO) Statistical Yearbook. Agricultural production. Retrieved 2019 December 12 from http://www.fao.org/faostat/es/#data/QC

Gaaliche B, Ladhari A, Zarrelli A, Ben MM (2019). Impact of foliar potassium fertilization on biochemical composition and antioxidant activity of fig (Ficus carica L.). Scientia Horticulturae 253:111-119. https://doi.org/10.1016/j.scienta.2019.04.024

Galieni A, Di Mattia C, Gregorio M, Speca S, Mastrocola D, Pisante M, Stagnari F (2015). Effects of nutrient deficiency and abiotic environmental stresses onyield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae 187:93-101. http://doi.org/10.1016/j.scienta.2015.02.036

Garza-Alonso CA, Olivares-Sáenz E, Gutiérrez-Díez A, Vázquez-Alvarado RE, López-Jiménez A (2019) Visual symptoms, vegetative growth, and mineral concentration in fig tree (Ficus carica L.) under macronutrient deficiencies. Agronomy 9(12):787. https://doi.org/10.3390/agronomy9120787

Guo C, Yang L, Wei J, Li Y, Xu J, Jiang Y (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research 23(13):1719-1726. http://doi.org/10.1016/S0271-5317(03)00184-2

Guo L, Zhu Y, Wang F (2018). Calcium sulfate treatment enhances bioactive compounds and antioxidant capacity in broccoli sprouts during growth and storage. Postharvest Biology and Technology 139:12-19. https://doi.org/10.1016/j.postharvbio.2018.01.010

Guo W, Nazim H, Liang Z, Yang D (2016). Magnesium deficiency in plants: An urgent problem. The Crop Journal 4(2):83-91. https://doi.org/10.1016/j.cj.2015.11.003

Harzallah A, Bhouri AM, Amri Z, Soltana H, Hammami M (2016). Phytochemical content and antioxidant activity of different fruit parts juices of three figs (Ficus carica L.) varieties grown in Tunisia. Industrial Crops and Products 83:255-267. http://doi.org/10.1016/j.indcrop.2015.12.043

Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager I, White P (2012). Functions of macronutrients. In: Marschner H (Ed). Marschner’s mineral nutrition of higher plants, 3rd ed. Academic Press, London, UK, pp 135-189. https://doi.org/10.1016/C2009-0-63043-9

He M, Tian H, Luo X, Qi X, Chen X (2015). Molecular progress in research on fruit astringency. Molecules 20:1434-1451. http://doi.org/10.3390/molecules20011434

Holstein H, Crisosto GM, Crisosto CH (2017). Fertirigation with potassium increase size and yield in fresh fig growing in California. Acta Horticulturae 1173:177-182. https://doi.org/10.17660/ActaHortic.2017.1173.30

Karthika KS, Rashmi I, Parvathi MS (2018). Biological functions, uptake and transport of essential nutrients in relation to plant growth. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak B (Eds). Plant nutrients and abiotic stress tolerance. Springer Nature, Gateway East, Singapore, pp 1-49. https://doi.org/10.1007/978-981-10-9044-8

Kathpalia R, Bhatla SC (2018). Plant Mineral Nutrition. In: Bhatla SC, Lal MA (Eds). Plant physiology, development and metabolism; Springer Nature, Gateway East, Singapore, pp 37-81. https://doi.org/10.1007/978-981-13-2023-1

Kobayashi NI, Saito T, Iwata N, Ohmae Y, Iwata R, Tanoi K, Nakanishi M (2013). Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiologia Plantarum 148(4):490-501. https://doi.org/10.1111/ppl.12003

Kumar TR, Kumar P, Nand SP (2007). Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. Journal of Integrative Plant Biology 49(3):313-322. https://doi.org/10.1111/j.1672-9072.2006.00358.x

Lancaster JE, Lister CE, Reay PF, Triggs CM (1997). Influence of pigment composition on skin color in a wide range of fruit and vegetables. Journal of American Society of Horticultural Science 122(4):594-598.

López-Contreras JJ, Zavala-García F, Urías-Orona V, Martínez-Ávila GCG, Rojas R, Nino-Medina G (2015). Chromatic, phenolic and antioxidant properties of sorghum bicolor genotypes. Notulae Botanicae Horti Agrobotanici Cluj Napoca 43(2):366-370. https://doi.org/10.15835/nbha4329949

Mendoza CVM, Pineda PJ, Vargas CJM, Hernández AE (2019). Nutrition of fig (Ficus carica L.) under hydroponics and greenhouse conditions. Journal of Plant Nutrition 11:1350-1365. https://doi.org/10.1080/01904167.2019.1609510

Mengel K, Kirkby EA, Kosegarten H, Appel T (2001). Principles of plant nutrition 5th ed. Springer, Dordrecht, NL. https://doi.org/10.1007/978-94-010-1009-2

Michalska A, Wojdylo A, Bogucka B (2016). The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato. Journal of Food Composition and Analysis 47:69-75. http://doi.org/10.1016/j.jfca.2016.01.004

Mota RMJ, Rocha PLG (2014). Physical and quality characteristics of jupi pineapple fruits on macronutrient and boron deficiency. Natural Resources 5(8):359-366. http://doi.org/10.4236/nr.2014.58034

Nava G, Roque A, Ribeiro G (2008). Nitrogen and potassium fertilization affect apple fruit quality in Southern Brazil. Communications in Soil Science and Plant Analysis 39(1):96-107. http://doi.org/10.1080/00103620701759038

Nieves CM, López DM, Ródenas R, Martínez V, Rubio F, Rivero R (2018). Critical responses to nutrient deprivation: a comprehensive review on the role of ROS and RNS. Environmental and Experimental Botany 161:64-85. https://doi.org/10.1016/j.envexpbot.2018.10.039

Pandey R (2015). Mineral nutrition of plants. In: Bahadur B, Rajam MV, Sahijram L, Krishnamurthy KV (Eds). Plant biology and biotechnology: Volume 1: Plant diversity: Organization, function, and improvement. Springer, India, pp 499-538. https://doi.org/10.1007/978-81-322-2286-6_20

Papadopoulos AP, Bar-Tal A, Silber A, Saha UK, Raviv K (2008). Inorganic and synthetic organic components of soilless culture and potting mixes. In: Raviv M, Lieth JH (Eds). Soilless Culture, Theory and Practices. Elsevier, Amsterdam, NL., pp 505-543. ISBN: 978-0-444-52975-6

Quaggio JA, Junior DM, Boaretto RM (2011). Sources and rates of potassium for sweet orange production. Scientia Agricola 68(3):369-375. http://doi.org/10.1590/S0103-90162011000300015

Rhodes R, Miles N, Charles HJ (2018). Interactions between potassium, calcium and magnesium in sugarcane grown on two contrasting soils in South Africa. Field Crops Research 225:1-11. https://doi.org/10.1016/j.fcr.2018.01.001

Sevil KS, Ertan E, Seferoglu S (2007). Effect of different nutrient solution formulations on morphological and biochemical characteristics of nursery fig trees grown in substrate culture. Scientia Horticulturae 113(2):20-27. https://doi.org/10.1016/j.scienta.2007.01.032

Singh DP, Beloy J, Mclnerney JK, Dar L (2011). Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota) Food Chemistry 132(3):1161-1170. https://doi.org/10.1016/j.foodchem.2011.11.045

Soliman SS, Alebidi AI, Al-Obeed A, Saif AM (2018). Effect of potassium fertilizer on fruit quality and mineral composition of fig (Ficus carica L. cv. Brown Turkey). Pakistan Journal of Botany 50(5):1753-1758.

Trejo TLI, Estrada OE, Gómez MFC, Becker C, Krumbein A, Schwarz D (2019). Flavonoid, nitrate and glucosinolate concentrations in brassica species are differentially affected by photosynthetically active radiation, phosphate and phosphite. Frontiers in Plant Science 10:371. http://doi.org/10.3389/fpls.2019.00371

United States Department of Agriculture (FAO) (2019). Agricultural Marketing Service. Specialty Crops. Retrieved 2019 December 15 from https://www.marketnews.usda.gov/mnp/fv-nav-byCom?navClass=VEGETABLES&navType=byComm

Vallejo F, Marín JG, Tomás BFA (2011). Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chemistry 130(3):485-492. https://doi.org/10.1016/j.foodchem.2011.07.032

Published
2020-08-25
How to Cite
GARZA-ALONSO, C. A., NIÑO-MEDINA, G., GUTIÉRREZ-DÍEZ, A., GARCÍA-LÓPEZ, J. I., VÁZQUEZ-ALVARADO, R. E., LÓPEZ-JIMÉNEZ, A., & OLIVARES-SÁENZ, E. (2020). Physicochemical characteristics, minerals, phenolic compounds, and antioxidant capacity in fig tree fruits with macronutrient deficiencies. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(3). https://doi.org/10.15835/nbha48311867
Section
Research Articles