The influence of meteorological factors on the dynamic of Ambrosia artemisiifolia pollen in an invaded area


  • Nicoleta IANOVICI West University of Timisoara, Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, 16 Pestalozzi Street, Timisoara (RO)
  • Marius-Victor BÎRSAN Meteo Romania (National Meteorological Administration), Department of Research and Infrastructure Projects. Sos. Bucuresti-Ploiesti 97, 013686 Bucharest (RO)



aeroallergen; main pollen season (MPS); seasonal pollen index (SPI)


The aim of the present study was to analyse the effect of weather conditions on Ambrosia artemisiifolia airpollen concentrations in the highly invaded area of western Romania. The investigation of Ambrosia pollen concentrations was carried out from 2000 to 2010 by means of the volumetric method. Ambrosia pollen concentrations had increasing trend over study period. The results of cluster analysis show that two main groups were identified: group A, with lower SPI (2000, 2001, 2002, 2003, 2004, 2007) and group B, with much higher SPI (2006, 2008, 2009, 2010). The statistical correlation between pollen concentrations and meteorological factors was determined by Pearson’s test. The relationships between Ambrosia pollen concentrations and meteorological parameters, were further assessed using multiple linear regression techniques. The pollen emissions are affected by meteorological factors in the main pollen season. Our results suggest that the abundance of Ambrosia artemisiifolia in western Romania is massive. The Ambrosia pollen load of Timisoara is most important between 15 August – 15 September. Consequently, this is the most dangerous period of the year for allergic reactions. The investigation of Ambrosia pollen behavior in the atmosphere is a compulsory step for measures to stop the spread and establishing control. Ambrosia pollen represents a major health problem and can be considered the main aeroallergenic plant pollen in our region.


Barnes C, Pacheco F, Landuyt J, Hu F, Portnoy J (2001). Hourly variation of airborne ragweed pollen in Kansas City. Annals of Allergy, Asthma & Immunology 86:166-171. DOI:10.1016/S1081-1206(10)62686-5

Bartkova-Scevkova J (2003). The influence of temperature, relative humidity and rainfall on the occurrence of pollen allergens (Betula, Poaceae, Ambrosia artemisiifolia) in the atmosphere of Bratislava (Slovakia). International Journal of Biometeorology 48:1-5.

Bianchi DE, Schwemmin DJ, Wagner JWH (1959). Pollen release in the common ragweed (Ambrosia artemisiifolia). Botanical Gazette 120:235-243.

Biçakçi A, Tosunoğlu A (2015). Allergenic Ambrosia (ragweed) pollen concentrations in Turkey. Asthma Allergy Immunology 13:33-46. doi: 10.5578/aai.8529

Bilińska D, Skjøth CA, Werner M, Kryza M, Malkiewicz M (2017). Source regions of ragweed pollen arriving in south-western Poland and the influence of meteorological data on the HYSPLIT model results. Aerobiologia 33(3):315-326.

Birsan MV, Marin L, Dumitrescu A (2013). Seasonal changes in wind speed in Romania, Romanian Reports in Physics 65(4):1479-1484.

Birsan MV (2015). Trends in monthly natural streamflow in Romania and linkages to atmospheric circulation in the North Atlantic. Water Resources Management 29(9): 3305-3313. s11269-015-0999-6

Birsan MV, Micu DM, Nita IA, Mateescu E, Szép R, Keresztesi Á (2019). Spatial-temporal changes in annual temperature extremes over Romania (1961-2013). Romanian Journal of Physics 64(7-8): 816.

Birsan MV, Nita IA, Craciun A, Sfîcă L, Radu C, Szép R, … Micheu MM (2020). Observed changes in mean and maximum monthly wind speed over Romania since AD 1961. Romanian Reports in Physics 72(1):702.

Bonini M, Sikoparija B, Prentovic M, Cislaghi G, Colombo P, Testoni C (2016). A follow-up study examining airborne Ambrosia pollen in the Milan area in 2014 in relation to the accidental introduction of the ragweed leaf beetle Ophraella communa. Aerobiologia 32(2):371-374.

Busuioc A, Birsan MV, Carbunaru D, Baciu M, Orzan A (2016). Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania: verification of the Clausius-Clapeyron scaling. International Journal of Climatology 36:2015-2034.

Cariñanos P, Emberlin J, Galan C, Domingues-Vilches E (2000). Comparison of two pollen counting methods of slides from a Hirst type volumetric trap. Aerobiologia 16:339-346.

Carrizo García C, Nepi M, Pacini E (2006). Structural Aspects and ecophysiology of anther opening in Allium triquetrum. Annals of Botany 97:521-527.

Celenk S, Malyer H (2017). The occurrence of Ambrosia pollen in the atmosphere of northwest Turkey: investigation of possible source regions. International Journal of Biometeorology 61:1499-1510.

Chen K W. Marusciac L, Tamas P T, Valenta R, Panaitescu C (2018). Ragweed pollen allergy: burden, characteristics, and management of an imported allergen source in Europe. International Archives of Allergy and Immunology

Comtois P (1998). Statistical analysis of aerobiological data. In: Mandrioli P, Comtois P, Levizzani V (Eds.) Methods in Aerobiology. Pitagora Editrice, Bologna.

DiTommaso A (2004). Germination behaviour of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Science 52:1002-1009.

Dobrinescu A, Busuioc A, Birsan MV, Dumitrescu A (2015). Changes in thermal discomfort indices in Romania and responsible large-scale mechanisms, Climate Research 64(3):213-226.

Essl F, Dullinger S, Kleinbauer I (2009). Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81:119-133.

Essl F, Biró K, Brandes D, Broennimann O, Bullock JM (2015). Biological flora of the Brit¬ish Isles: Ambrosia artemisiifolia. Journal of Ecology103:1069-1098.

Faur A, Ianovici N, Rotundu M (2001). Aerobiologic study on some composites allergen pollen in Timisoara. Proceeding of 4rd International Symposium Regional Multidisciplinary Research (Hungary, Romania, Yugoslavia), Section Biological Sciences, Agriculture and Environment – 16-18 November 2000, Timişoara, 172-177.

Fehér Z, Járai-Komlódi M (1998). A new weather factor predicting airborne pollen concentration: Péczely’s macrosynoptic weather types. Aerobiologia 14(2):171-177.

Fornaciari M, Bricchi E, Greco F, Fascini D, Giannoni C (1992). Daily variations of Urticaceae pollen count and infl uence of meteoclimatic parameters in East Perugia during 1989. Aerobiologia 8:407-413.

Franchi GG, Nepi M, Matthews ML, Pacini E (2007). Anther opening, pollen biology and stigma receptivity in the long blooming species, Parietaria judaica L. (Urticaceae) Flora 202:118-127.

Fumanal B, Plenchette C, Chauvel B, Bretagnolle F (2006). Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza 17:25-35.

Galan C, Alcazar P, Cariňanos P, Garcia H, Dominguez-Vilches E (2000). Meteorological factors affecting daily Urticaceae pollen counts in southwest Spain. International Journal of Biometeorology 43:191-195.

García-Mozo H, Yaezel L, Oteros J, Galán C (2014). Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Science of the Total Environment 473-474:103-109.

Gard B, Bretagnolle F, Laitung B (2011). How does common ragweed tolerate insect herbivory? 3rd International Symposium on Weeds and Invasive Plants, Ascona, Switzerland October 2-7.

Gioulekas D, Balafoutis C, Damialis A, Papakosta D, Gioulekas G (2004). Fifteen years’ record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece. International Journal of Biometeorology 48:128-136. DOI: 10.1007/s00484-003-0190-2

Hernandez-Ceballos MA, Garcia-Mozo H, Adame JA, Dominguez-Vilches E, De la Morena, BA (2011). Synoptic and meteorological characterisation of olive pollen transport in Cordoba province (south-western Spain). International Journal of Biometeorology 55:17-34. DOI:10.1007/s00484-010-0306-4

Hirst JM (1952). An automatic volumetric spore trap. Annals of Applied Biology 39:257-265

Ianovici N, Sîrbu C (2007). Analysis of airborne ragweed (Ambrosia artemisiifolia L.) pollen in Timişoara, 2004. Analele Universităţii din Oradea, Fascicula Biologie XIV:101-108.

Ianovici N (2007). The principal airborne and allergenic pollen species in Timişoara. Annals of West University of Timişoara, ser. Biology 10: 11-26.

Ianovici N, Şteflea F, Tilică Dondera P (2008). Date preliminare privind viabilitatea polenului ca bioindicator al calităţii aerului în Timişoara. Annals of West University of Timişoara, ser. Biology 11: 9-14.

Ianovici N (2009). Approaches on the invasive alien taxa in Romania - Ambrosia artemisiifolia (ragweed) I, Annals of West University of Timişoara, ser. Biology 12: 87-104.

Ianovici N (2011). Approaches on the invasive alien taxa in Romania - Ambrosia artemisiifolia (ragweed) II, Annals of West University of Timişoara, ser. Biology 14:93-112.

Ianovici N, Panaitescu Bunu C, Brudiu I (2013a). Analysis of airborne allergenic pollen spectrum for 2009 in Timişoara, Romania, Aerobiologia 29 (1):95-111.

Ianovici N, Maria C, Răduţoiu MN, Haniş A, Tudorică D (2013b). Variation in airborne fungal spore concentrations in four different microclimate regions in Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(2):450-457.

Ianovici N, Tudorică D, Șteflea F (2015). Methods of biomonitoring in urban environment: allergenic pollen in Western Romania and relationships with meteorological variables. Annals of West University of Timişoara, ser. Biology 18 (2):145-158.

Ianovici N (2015). Relation between Poaceae pollen concentrations and meteorological factors during 2000-2010 in Timisoara, Romania. Acta Agrobotanica 68(4):373-381.

Ianovici N (2017). Summer airborne mycoflora of Timisoara (Romania) and relationship to meteorological parameters. Grana 56(6):424-435.

Juhász M, Juhász IE, Gallovich E, Radišić P, Ianovici N (2004). Last year’s ragweed pollen concentrations in the southern part of the Carpathian Basin. The 11th symposium on analytical and environmental problems, Szeged, pp 339-343.

Kaplan A, Sakiyan N, Pinar NM (2003). Daily Ambrosia pollen concentration in the air of Ankara, Turkey (1990--1999). Acta Botanica Sinica 45(12):1408-1412.

Kasprzyk I (2008). Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland); evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. International Journal of Biometeorology 52:341-351. DOI:10.1007/s00484-007-0129-0

Kasprzyk I., Walanus A (2010). Description of the main Poaceae pollen season using bi-Gaussian curves, and forecasting methods for the start and peak dates for this type of season in Rzeszów and Ostrowiec Św. (SE Poland). Journal of Environmental Monitoring 12:906-916.

Köppen W (1931). Grundriss der Klimakunde [The basics of the climate]. De Gruyter & Co, Berlin (in German)

Kozlowski TT, Pallardy SG (2002). Acclimation and adaptive responses of woody plants to environmental stresses. Botanical Review 68:270-334.[0270:AAAROW]2.0.CO;2

Leru PM, Matei D, Ianovici N (2015). Health impact of Ambrosia artemisiifolia reflected by allergists practice in Romania. A questionnaire - based survey, Annals of West University of Timişoara, ser. Biology 18(1):43-54.

Leru PM, Eftimie AM, Anton VF, Thibaudon M (2019). Five-year data on pollen monitoring, distribution and health impact of allergenic plants in Bucharest and the Southeastern Region of Romania. Medicina 55:140.

Leskovsek R, Eler K, Batric F, Simoncic A (2012). The influence of nitrogen, water and competition on the vegetative and reproductive growth of common ragweed (Ambrosia artemisiifolia L.). Plant Ecology 213:769-781.

Lo F, Bitz CM, Battisti DS, Hess JJ (2019). Pollen calendars and maps of allergenic pollen in North America. Aerobiologia 35:613-633.

Makra L, Juhász M, Béczi R, Borsos E (2005). The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44(1):57-64

Makra L, Juhász M, Borsos E, Béczi R (2004). Meteorological variables connected with airborne ragweed pollen in Southern Hungary. International Journal of Biometeorology 49(1):37-47.

Makra L, Santa T, Matyasovszky I, Damialis A, Karatzas K (2010). Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories. Journal of Geophysical Research 115:D24220.

Makra L, Matyasovszky I, Hufnagel L, Tusnady G (2015). The history of ragweed in the world. Applied Ecology and Environmental Research 13(2):489–512.

Makra L, Matyasovszky I, Tusnády G, Wang YQ, Csépe Z, Bozóki Z, … Thibaudon M (2016). Biogeographical estimates of allergenic pollen transport over regional scales: common ragweed and Szeged, Hungary as a test case. Agricultural and Forest Meteorology 221:94-110.

Manea A, Birsan MV, Tudorache G, Cărbunaru F (2016). Changes in the type of precipitation and associated cloud types in Eastern Romania (1961-2008). Atmospheric Research 169:357-365.

Matyasovszky I, Makra L, Csépe Z, Sümeghy Z, Deák ÁJ (2015). Plants and past weather: a study for atmosperic pollen concentrations of Ambrosia, Poaceae and Populus. Carpathian Journal of Earth and Environmental Sciences 10 (1):183-193.

Mihai G, Birsan MV, Dumitrescu A, Alexandru A, Mirancea I, Ivanov P, Daia M (2018a). Adaptive genetic potential of European silver fir in Romania in the context of climate change, Annals of Forest Research 61(1):95-108.

Mihai G, Mirancea I, Birsan MV, Dumitrescu A (2018b). Patterns of genetic variation in bud flushing of Abies alba populations, iForest 11(2):284-290.

Nilsson S, Persson S (1981). Tree pollen spectra in the Stockholm region (Sweden), 1973-1980. Grana 20:179-182.

Peternel R, Čulig J, Srnec L, Mitić B, Vukušić I (2005). Variation in ragweed (Ambrosia artemishfolia L.) pollen concentration in central Croatia, 2002-2003. Annals of Agricultural and Environmental Medicine 12:11-16.

Peternel R, Čulig J, Hrga I, Hercog P (2006). Airborne ragweed (Ambrosia artemisiifolia L.) pollen concentrations in Croatia, 2002-2004. Aerobiologia 22:161-168.

Piotrowska K, Kubik-Komar A (2012). A comparative analysis of Poaceae pollen seasons in Lublin (Poland), Acta Agrobotanica 65 (4):39-48.

Popescu FD, Tudose AM (2011). Ambrosia pollen sensitization in allergic rhinitis patients from the central part of the Romanian Plain. Romanian Journal of the Rhinology 1(1):26-30.

Puc M (2006). Ragweed and mugwort pollen in Szczecin, Poland. Aerobiologia 22:67-78.

Ritenberga O, Sofiev M, Siljamo P, Saarto A, Dahl A (2018). A statistical model for predicting the inter-annual variability of birch pollen abundance in Northern and North-Eastern Europe. Science of the Total Environment 615:228-239. DOI:10.1016/j.scitotenv.2017.09.061

Saint-Louis S, Ditommaso A, Watson AK (2005). A Common Ragweed (Ambrosia artemisiifolia) Biotype in Southwestern Quebec Resistant to Linuron. Weed Technology 19:737-743. DOI:

Šaulienė I, Veriankaitė L (2012). Analysis of high allergenicity airborne pollen dispersion: common ragweed study case in Lithuania. Annals of Agricultural and Environmental Medicine 19(3):415-419.

Sikoparija B, Skjøth C, Celenk S, Testoni C, Abramidze T (2017). Spatial and temporal variations in airborne Ambrosia pollen in Europe. Aerobiologia 33(2):181-189. 1

Šikoparija B, Mimić G, Panić M, Marko O, Radišić P (2018). High temporal resolution of airborne Ambrosia pollen measurements above the source reveals emission characteristics. Atmospheric Environment 193:13-23.

Skjøth CA, Smith M, Sikoparija B, Stach A, Myszkowska D (2010). A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agricultural and Forest Meteorology 150:1203-1210.

Smith M, Cecchi L, Skjøth CA, Karrer G, Šikoparija B (2013). Common ragweed: a threat to environmental health in Europe. Environment International 61:115-126.

Štefanić E, Kovačević V, Lazanin Ž (2005). Airborne ragweed pollen concentration in north-eastern Croatia and its relationship with meteorological parameters. Annals of Agricultural and Environmental Medicine 12:75-79.,90383,0,2.html

Stepalska D, Myszkowska D, WoŁek J, Piotrowicz K, ObtuŁowicz K (2008). The influence of meteorological factors on Ambrosia pollen loads in Cracow, Poland, 1995–2006. Grana 47(4):297-304.

Stjepanović B, Svečnjak Z, Hrga I, Večenaj A, Šćepanović M et al. (2015). Seasonal variation of airborne ragweed (Ambrosia artemisiifolia L.) pollen in Zagreb, Croatia. Aerobiologia 31:525-535.

Vázquez LM, Galán C, Domınguez-Vilches E (2003). Influence of meteorological parameters on Olea pollen concentrations in Cordoba (South-western Spain). International Journal of Biometeorology 48: 83–90.

Trewartha GT (1943). An introduction to weather and climate. McGraw-Hill, New York

Wozniak MC, Steiner Al (2017). A prognostic pollen emissions model for climate models (PECM1.0) Geoscientific Model Development 10:4105-4127.

Zhang Y, Bielory L, Cai T, Mi Z, Georgopoulos P (2015). Predicting onset and duration of airborne allergenic pollen season in the United States. Atmospheric Environment 103:297-306.

Zink K, Vogel H, Vogel B, Magyar D, Kottmeier C (2011). Modeling the dispersion of Ambrosia artemisiifolia L pollen with the model system COSMO-ART. International Journal of Biometeorology.

Ziska LH, Gebhard DE, Frenz DA, Faulkner S, Singer BD (2003). Cities as harbingers of climate change: Common ragweed, urbanization, and public health. Journal of Allergy and Clinical Immunology 111:290-295.

Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N (2011). Recent warming by latitude associated with increased length of ragweed pollen season in central North America. Proceedings of the National Academy of Sciences 108 (10):4248-4251.

Ziska LH, Makra L, Harry SK, Bruffaerts N, Hendrickx M, Coates F, … Crimmins AR (2019). Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: a retrospective data analysis. The Lancet Planetary Health 3(3):e124-e131.




How to Cite

IANOVICI, N., & BÎRSAN, M.-V. (2020). The influence of meteorological factors on the dynamic of Ambrosia artemisiifolia pollen in an invaded area . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 752–769.



Research Articles
DOI: 10.15835/nbha48211862