Chlorophyll a fluorescence as an indicator of water stress in Calophyllum brasiliense

Authors

  • Lucas C. REIS Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Silvana P.Q. SCALON Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR) https://orcid.org/0000-0003-2024-7695
  • Daiane DRESCH Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Andressa Caroline FORESTI Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Cleberton C. SANTOS Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Zefa V. PEREIRA Federal University of Grande Dourados, Faculty of Biological and Environmental Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)

DOI:

https://doi.org/10.15835/nbha48111757

Keywords:

abscisic acid; Dickson quality; leaf area; photosystem II

Abstract

The objective of this study was to evaluate chlorophyll a fluorescence as a stress indicator in Calophyllum brasiliense Cambess seedlings grown with different concentrations of abscisic acid (ABA) under intermittent water deficit condition: daily irrigation without ABA (I); daily irrigation + 10 μM ABA (I 10); daily irrigation + 100 μM ABA (I 100); suspension of daily irrigation without ABA (SI); suspension of daily irrigation + 10 μM ABA (SI 10) and  suspension of daily irrigation + 100 μM ABA (SI 100). The intermittent water deficit reduces water status and impairs the photochemical apparatus functioning and seedling quality. The fluorescence measurements helped identify the stress condition of water deficit in the cultivation of C. brasiliense and the beneficial effect of the application of 10 μM of ABA in minimizing stress and facilitating the recovery of seedlings after re-irrigation, while maintaining the integrity and function of the photosynthetic apparatus.

References

Asharaf M, Harris PJC (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51:163-190.

Baker NR, Rosenqvst E (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal Experimental Botany 55:1607-1621.

Brodribb TJ, Mcadam AS (2001). Abscisic acid mediates a divergence in the drought response of two conifers. Plant Physiology 162:1370-1377.

Campelo DH, Lacerda CF, Sousa JA, Correia D, Bezerra AME, Araújo JDM, Neves ALR (2015). Leaf gas exchange and efficiency of photosystem II in adult plants of six forest species as function of the water supply in the soil (Title English). Revista Árvore 39:973-983.

Carvalho PER (2003). Espécies arbóreas brasileiras. Brasília, DF: Embrapa Informação Tecnologia; Colombo-PR: Embrapa Florestas, pp 103.

Damour G, Simonneau T, Cochard H, Urban L (2010). An overview of models of stomatal conductance at the leaf level. Plant Cell Environment 33:1419-1438.

Dickson A, Leaf AL, Hosner JF (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chronicle 36:10-13.

Ferreira DF (2014). Sisvar: a guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia 38:109-112.

França PHT, Silva ECA, Silva TC. Brasil NA, Nogueira RJMC (2017). Physiological analysis in seedlings of guanandi (Calophyllum brasiliense Cambess.) under a water deficit (Title English). Agropecuária Científica no Semi-Árido 13:264-269.

Freitas VMB, Scalon SPQ, Dresch DM, Bastos SS, Souza APR (2018). Influence of exogenous application of abscisic acid on gas exchanges in Hymenaea courbaril L. (Fabaceae) seedlings subjected to water deficit. Floresta 48:163-172.

Gordin CRB, Marques RF, Scalon SPQ (2016). Emergence and initial growth of Hancornia speciosa (Gomes) seedlings with different substrates and water availability. Revista Ciências Agrárias 59:352-361.

Kalaji HM, Rastogi A, Živčák M, Brestic M, Daszkowska-Golec A, Sitko K, ... Cetner MD (2018). Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica 56:953-961.

Kalil Filho NA, Marzollo LG, Lopes AJ, Wendling I (2007). Produção de mudas de guanandi. Comunicado Técnico Embrapa, Colombo 177 pp 4.

Kowitcharoen L, Wongs-Aree C, Setha S Komkhuntod R, Srilaong V, Kondo S (2015). Changes in abscisic acid and antioxidant activity in sugar apples under drought conditions. Scientia Horticulturae 193:1-6.

Li RH, Guo PG, Michael B, Stefania G, Salvatore C (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China 5:751-757.

Mohammadi H, Janmohammadi M, Sabaghinia N (2015). Chlorophyll fluorescence response of wheat to exogenous application of growth regulators under terminal drought stress. Annales Universitatis Mariae Curie-Sklodowska 70:13-27.

Moraes WWC, Susin F, Vivian MA, Araújo MM (2012). Influence of the irrigation in the growth Schinus terebinthifolius seedlings (Title English). Pesquisa Florestal Brasileira 32:23-28.

Nesterenko TV, Shikhov VN, Tikhomirov AA (2019). Estimation of changes in the activity of photosynthetic apparatus of plant leaves based on half-time of fluorescence intensity decrease. Photosynthetica 57:132-136.

Nunes DP, Scalon SPQ, Dresch DM, Gordin CRB (2017). Photosynthetic and enzymatic metabolism of Schinus terebinthifolius Raddi seedlings under water deficit. Ciência e Agrotecnologia 41:676-682.

Rohácek K (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13-29.

Rosa DBCJ, Scalon SPQ, Cremon T, Ceccon F, Dresch DM (2017). Gas exchange and antioxidant activity in seedlings of Copaifera langsdorffii Desf. under different water conditions. Annais da Academia Brasileira de Ciências 89:3039-3050.

Sarafraz-Ardakani MR, Khavari-Nejad RA, Moradi F, Najai F (2014). Abscisic acid and cytokinin-induced osmotic and antioxidant regulation in two drought-tolerant and drought-sensitive cultivars of wheat during grain filling under water deficit in yield conditions. Notulae Scientia Biologicae 6(3):354-362.

Scalon SPQ, Mussury RM, Euzébio VLM, Kodama FM, Kissmann C (2011). Water stress in metabolism and initial growth of mutambo (Guazuma ulmifolia Lam) (Title English). Ciência Florestal 21:655-662.

Scalon SPQ, Kodama FM, Dresch DM, Mussury RM, Pereira ZV (2015). Gas exchange and photosynthetic activity in Hancornia speciosa Gomes seedlings under water deficit conditions and during rehydration. Bioscience Journal 31:1124-1132.

Souza AF, Rocha Junior EO, Laura VA (2018). Early development and efficiency in water and nitrogen use by seedlings of Calophyllum brasiliense, Eucalyptus urograndis, Tabebuia impetiginosa and Toona ciliata. Ciência Florestal 28:1465-1477.

Tardieu F, Parent B, Simonneau T (2010). Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes. Plant, Cell and Environment 33:636-647.

Vieira EA, Silva MG, Moro CF, Laura VA (2017). Physiological and biochemical changes attenuate the effects of drought on the Cerrado species Vatairea macrocarpa (Benth.) Ducke. Plant Physiology and Biochemistry 115:472-483.

Zanandrea I, Nassi FL, Turchetto AC, Braga EJB, Peters JA, Bacarin MA (2006). Effect of salinity under fluorescence parameters in Phaseolus vulgaris. Revista Brasileira de Agrociência 12:157-161.

Zhao WS, Sun YL, Kjelgren R, Liu X (2015). Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiologiae Plantarum 37:1704-1713.

Zhu JK (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247-273.

Downloads

Published

2020-03-31

How to Cite

REIS, L. C., P.Q. SCALON, S., DRESCH, D., FORESTI, A. C., SANTOS, C. C., & PEREIRA, Z. V. (2020). Chlorophyll a fluorescence as an indicator of water stress in Calophyllum brasiliense. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 210–220. https://doi.org/10.15835/nbha48111757

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48111757

Most read articles by the same author(s)