Shading as a means of mitigating water deficit in seedlings of Campomanesia xanthocarpa (Mart.) O. Berg

Authors

  • Edinéia M.M. BARTIERES Federal University of Grande Dourados, Faculty of Biological and Environmental Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Silvana P.Q. SCALON Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Daiane M. DRESCH Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Edvânia A.S. CARDOSO Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Mailson V. JESUS Federal University of Grande Dourados, Faculty of Agricultural Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)
  • Zefa V. PEREIRA Federal University of Grande Dourados, Faculty of Biological and Environmental Sciences, Road Dourados-Itahum, Km 12, Rural Subdivision, CEP: 79804970, Dourados, State Mato Grosso do Sul (BR)

DOI:

https://doi.org/10.15835/nbha48111720

Keywords:

abiotic stress; guabiroba; shading; photosynthetic metabolism

Abstract

In this research it was hypothesized that Campomanesia xanthocarpa can overcome some level of water deficiency by adjusting physiological parameters and that shading minimizes the water deficit effects while maintaining elevated photosynthetic rates and relative water content of the leaves and makes a resumption of metabolism and growth when the water supply is normalized. The seedlings were submitted to two water regimes (continuous irrigation - CI and intermittent irrigation - II), three shading percentages (0, 30 and 70%) and six evaluation times (Start - T0, 1st Photosynthesis Zero - 1st P0, 1st Recovery - 1st REC, 2nd Photosynthesis Zero - 2nd P0, 2nd Recovery - 2nd REC and END). Plants under water deficit at 0% shading led to a reduction in photosynthetic metabolism, relative water content (RWC), leaf area, number of leaves, and height, especially during the stress periods 1st and 2nd P0. The 30 and 70% shading mitigated the stressful effect of water deficit on C. xanthocarpa seedlings. The results did not confirm the hypothesis that C. xanthocarpa seedlings are intolerant to water deficit since, although sensitive, they presented a potential for recovery of photosynthetic and growth characteristics under all cultivation conditions. It was concluded that that shading minimizes the stressful effects of water deficit.

References

Alvarenga AAD, Castro EMD, Junior Lima EC, Magalhães MM (2003). Effects of different light levels on the initial growth and photosynthesis of Croton urucurana Baill. in southeastern Brazil. Revista Árvore 27(1):53-57. http://dx.doi.org/10.1590/S0100-67622003000100007

Batista NA, Bianchini E, Carvalho ES, Pimenta JA (2014). Architecture of tree species of different strata developing in environments with the same light intensity in a semideciduous forest in southern Brazil. Acta Botânica Brasílica 28:34-45. http://www.scielo.br/pdf/abb/v28n1/v28n1a04.pdf

Bento LF, Scalon SDPQ, Dresch DM, Pereira ZV (2016). Potential for recovery of Campomanesia xanthocarpa Mart. ex O. Berg seedlings from water deficit. African Journal Agricultural Research 11:2775-2785. http://dx.doi.org/10.5897/AJAR2016.11231

Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007). Stressful ‘‘memories’’ of plants: Evidence and possible mechanisms. Plant Science 173:603-608.

Campelo DDH, Lacerda CF, Sousa JÁ, Correia D, Bezerra AME, Araújo JDM, Neves ALR (2015). Leaf gas exchange and efficiency of photosystem II in adult plants of six forest species as function of the water supply in the soil. Revista Árvore 39(5):973-983. http://dx.doi.org/10.1590/0100-67622015000500020

DosAnjos L, Oliva MA, Kuki KN, Mielke MS, Ventrella MC, Galvão MF, Pinto LRM (2015). Key leaf traits indicative of photosynthetic plasticity in tropical tree species. Trees 29:247-258. https://doi.org/10.1007/s00468-014-1110-2

Fan X, Hu H, Huang G, Huang F, Li Y, Palta J (2015). Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize. Plant Soil 390:337-349. https://doi.org/10.1007/ s11104-015-2410-z

Favaretto VF, Martinez CA, Soriani HH, Furriel RPM (2011). Differential responses of antioxidant enzymes in pioneer and late-successional tropical tree species grown under sun and shade conditions. Environmental Experimental of Botany 70:20-28. https://doi.org/10.1016/j.envexpbot.2010.06.003

Ferreira DF (2010). Programa de análises estatísticas (Statistical Analysis Software) e planejamento de Experimentos – SISVAR 5.3. Lavras: UFLA. http://www.scielo.br/pdf/cagro/v35n6/a01v35n6.pdf

Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz Espejo A, … Warren CR (2012). Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science 193:70-84. https://doi.org/10.1016/j.plantsci.2012.05.009

Fialho GS, Dalvi LP, Dalvi NBC, Kuhlcamp KT, Efgen EM (2011). Prediction of the leaf area in zucchini fruit: a non destructive, exact, simple, fast and practical method. Revista Brasileira de Agropecuária Sustentável 1:59-63.

Gandolfi S, Leitão Filho HF, Bezerra CL (1995). Floristic survey and succession of shrub and tree species of one mesophytic semideciduous forest in the Guarulhos Municipality, SP. Revista Brasileira de Biologia 55(4):753-767.

Holmgren M, Gomez-Aparicio L, Quero JL, Valladares F (2012). Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities. Oecologia 169:293-305. https://link.springer.com/article/10.1007/s00442-011-2196-5

Jin K, Shen J, Ashton RW, White RP, Dodd IC, Parry MA, Whalley WR (2015). Wheat root growth responses to horizontal stratification of fertilizer in a water-limited environment. Plant and Soil 386(1-2):77-88.

Junglos FS, Junglos MS, Dresch DM, Pereira NS, Kodama FFM, Scalon SP (2016). Recovery of the photosynthetic capacity of Campomanesia adamantium Myrtaceae) after water deficit. Brazilian Journal of Botany 39(2):541-546. http://dx.doi.org/10.1007/s40415-016-0275-x

Kelling MB, Araujo MM, León EB, Aimi SC, Turchetto F (2017). Regímenes de riego y dosis de polímero hidroretenedor sobre características morfológicas y fisiológicas de plantas de Cordia trichotoma. Bosque 38(1):123-131. http://dx.doi.org/10.4067/S0717-92002017000100013

Klafke JZ, Silva MA, Paningasp TF, Belli KC, Oliveira MF, Barichello MM, … Viecili PRN (2010) Effects of Campomanesia xanthocarpa on biochemical, hematological and oxidative stress parameters in hypercholesterolemic patients. Journal of Ethnopharmacology 127:299-305. http://dx.doi.org/%2010.1007/s11104-014-2249-8

Luber J, Oliveira, MIU, Ferreira, MFS, Carrijo TT (2017). Flora of espírito saanto: Campomanesia (Myrtaceae). Rodriguésia 68(5):1767-1790. http://dx.doi.org/10.1590/2175-7860201768514

Martins MQ, Bregonci IDS, Marçal TDS, Coelho R, Colwell FDJ (2014). Seedling emergence of five varieties of citric rootstocks grown in environments with different levels of shading. Plant Science Today 1(3):131-139. http://dx.doi.org/10.14719/pst.2014.1.3.37

Pena-Rojas K, Donoso S, Pacheco C, Riquelme A, Gangas R, Guajardo A, Durán S (2018). Respuestas morfo-fisiológicas de plantas de Lithraea caustica (Anacardiaceae) sometidas a restricción hídrica controlada. Bosque 39(1):27-36. http://dx.doi.org/10.4067/S0717-92002018000100027

Queiroz CGS, Garcia Q S, Lemos Filho JP (2002) Photosynthetic activity and membrane lipid peroxidation of aroeira-do-sertão plants under water stress and after rehydration. Brazilian Journal of Plant Physiology 14(1):59-63. http://dx.doi.org/10.1590/S1677-04202002000100008

Rocha M, Licausi F, Araújo WL, Nunes-Nesi A, Sodek L, Alisdair RF, Van Dongen JT (2010). Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by water logging of Lotus japonicus. Plant Physiology 152(3):1501-1513. http://dx.doi.org/10.1104/pp.109.150045

Rosa DB, Scalon SP, Cremon T, Ceccon F, Dresch DM (2017). Gas exchange and antioxidant activity in seedlings of Copaifera langsdorffii Desf. under different water conditions. Annals Brazilian Academic Science 89(4):3039-3050. http://dx.doi.org/10.1590/0001-3765201720170499

Salisbury EJ (1927). On the causes and ecological significance of stomatal frequency, with special reference to the woodland. Philosophical Transactions of the Royal Society of London 216:1-65.

Schachtman DP, Goodger JQD (2008). Chemical root to shoot signaling under drought. Trends Plant Science 13(6):281-287. https://doi.org/10.1016/j.tplants.2008.04.003

Silva FD, Oliveira RVD, Santos Loureiro NR, Paula AD (2003). Floristic composition and ecological groups of species of a sub montane semideciduous forest stretch on São Geraldo farm, Viçosa, Minas Gerais. Revista Árvore 27(3):311-319. http://dx.doi.org/10.1590/S0100-67622003000300006

Soares-Silva LH, Kita KK, Chagas e Silva F (1998 Fitossociologia de um trecho de floresta de galeria no Parque Estadual Mata dos Godoy, Londrina, PR, Brasil. Boletim do Herbário Ezechias Paulo Heringer 3:46-62. http://revistas.jardimbotanico.ibict.br/index.php/Boletim/article/view/917756/200

Souza RF, Machado AS, Galvão F, Figueiredo Filho A (2017). Phytosociology of tree vegetation in Iguaçu national park. Ciência Florestal 27(3):853-869. https://periodicos.ufsm.br/cienciaflorestal/article/view/28635/pdf

Taiz L, Zeiger E, Møller I M, Murphy A (2017). Fisiologia e desenvolvimento vegetal. 6th Ed. Porto Alegre, Artmed, pp 858.

Thellier M, Lüttge U (2012). Plant memory: a tentative model. Plant Biology 15:1-12.

Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A (2011). Do plants remember drought? Hints towards a drought-memory ingrasses. Environmental and Experimental Botany 71:34-40.

Downloads

Published

2020-03-31

How to Cite

BARTIERES, E. M., P.Q. SCALON, S., DRESCH, D. M., CARDOSO, E. A., JESUS, M. V., & PEREIRA, Z. V. (2020). Shading as a means of mitigating water deficit in seedlings of Campomanesia xanthocarpa (Mart.) O. Berg. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 234–244. https://doi.org/10.15835/nbha48111720

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha48111720

Most read articles by the same author(s)