Climate change effects on phytochemical compounds and antioxidant activity of Olea europaea L.

  • Samia BEN MANSOUR-GUEDDES Olive Tree Institute, Ibn Khaldoun BP 14, 4061, Sousse
  • Dhouha SAIDANA-NAIJA Olive Tree Institute, Ibn Khaldoun BP 14, 4061, Sousse
  • Ameni BCHIR Olive Tree Institute, Ibn Khaldoun BP 14, 4061, Sousse
  • Mohamed BRAHAM Olive Tree Institute, Ibn Khaldoun BP 14, 4061, Sousse
Keywords: bioactive compounds; biological properties; climatic conditions; leaves; olive tree

Abstract

To tolerate water shortage and high temperature, olive cv. ‘Meski’, the main variety of table olives in Tunisia, developed several biochemical changes. The hereby study focused on the adaptation of the olive tree to the climatic conditions, considering the evaluation of phenolic compounds, chlorophylls, carotenoids, saponin and steroid synthesis, as well as the evaluation of the antioxidant activity. The analyses were made upon fresh leaves collected from three coastal areas of Tunisia (North (sub-humid), center (higher semi-arid) and South (lower arid)) and using different leaves’ extracts. The results emphasized that Southern ‘Meski’ trees had leaves with more polyphenols, flavonoids, o-diphenols and tannins compared with the Northern ones. From the North to the South, ‘Meski’ leaves showed an increase of carotenoids and a decrease of chlorophyll a and b contents. The highest level of antioxidant compounds of Southern leaves could be contributed to reduce the oxidative stress of the olive tree. The spectrophotometric analysis of the antioxidant capacity of leaves collected from central and Southern areas, based on DPPH and ABTS radical-scavenging activity, showed a higher value of antioxidant activity than the Northern ones, at different extract concentrations. Therefore, the increase of the analyzed bioactive compounds can be considered as a response of the tree to surround aggressions and to oppose the oxidative stress that results from the severity of climatic conditions, characteristic of the Southern area.

Metrics

Metrics Loading ...

References

Abaza L, Taamalli A, Nsir H, Zarrouk M (2015). Olive tree (Olea europaea L.) leaves: importance and advances in the analysis of phenolic compounds. Antioxidants 4(4):682-698.

Agarwal M, Zhu Jk (2005). Integration of abiotic stress signaling pathways: plant abiotic stress (Eds.). Blackwell Publishing, Oxford.

Aouidi F, Perraud I, Roussos S, Hamdi M (2007). Etude de la répartition quantitative des phénols totaux dans l'olivier en fonction des organes et leur degré de maturité. In: Karray B, Khecharem J, Sevastianos R. Proceeding Olivebioteq pp 376- 379.

Araújoa LBDC, Silva SL, Galvãoc MAM, Ferreiraa MRA, Araújod EL, Randaua KP, Soares LAL (2013). Total phytosterol content in drug materials and extracts from roots of a canthospermum hispidum by UV-VIS spectrophotometry. Revista Brasileira Farmacognosia 23(5):736-742.

Arji I, Arzani K (2008). Effect of water stress on some biochemical changes in leaf of five olive (Olea europaea L.) cultivars. Acta Horticultura 791:523-526.

Arts MJT, Dalinga JS, Voss HP, Haenen GR, Bast A (2004). A new approach to assess the total antioxidant capacity using the TEAC assay. Biology et Medecine 88(4):575-570.

Aruoma OI (2003). Methodological considerations for characterizing potential antioxidant actions of bioactive components in food plants. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 523:9-20.

Ba K, Tine E, Destain J, Cissé N, Thonart P (2010). Etude comparative des composés phénoliques, du pouvoir antioxydant de différentes variétés de sorgho sénégalais et des enzymes amylolytiques de leur malt. Biotechnologie, Agronomie, Société et Environnement 14(1) :131-139.

Baccou JC, Lambert F, Sauvaire Y (1977). Spectrophotometric method for the determination of total steroidal sapogenin. Analyst 102:458-465.

Bacelar EA, Santos DL, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM (2006). Immediate responses and adaptive strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Science 170(3):596-605.

Blanch S, Peñuelas J, Sardans J, Llusia J (2009). Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiologia Plantarium 31(1):207-218.

Blekas G, Psomiadou E, Tsimidou M, Boskou D (2002). The importance of total polar phenols to monitor the stability of Greek virgin olive oil. European Journal of Lipid Science and Technology 104(6):340-346.

Böttcher S, Drusch S (2017). Saponins-Self-assembly and behavior at aqueous interfaces. Advances in Colloid and Interface Science 243:105-113.

Boubakri H, Jdey A, Taamalli A, Taamalli W, Jebara M, Brini F, … Verardo V (2017). Phenolic composition as measured by liquid chromatography/ mass spectrometry and biological properties of Tunisian barley. International Journal of Food Properties 20(2):1783-1797.

Boutté Y, Grèbe M (2009). Cellular processes relying on sterol function in plants. Current Opinion in Plant Biology 12(6):705-713.

Brahmi F, Mechri B, Dabbou S, Dhibi M, Hammami M (2012). The efficacy of phenolic compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Industrial Crops and Products 38:146-152.

Brahmi F, Mechri B, Dhibi M, Hammami M (2014). Variation in antioxidant activity and phenolic content in different organs of two Tunisian cultivars of Olea europaea L. Acta Physiologiae Plantarum 36(1):169-178.

Cetinkayaa H, Koca M, Kulak M (2016). Monitoring of mineral and polyphenol content in olive leaves under drought conditions: application chemometric techniques. Industrial Crops and Products 88:78-84.

Choi CW, Kim SC, Wang SSH, Choi BK, Jahn H, Lee MY, … Kim K (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science 163(6):1161-1168.

Choi EM, Wang KH (2005). Screening of Indonesian medicinal plants for inhibitor activity on nitric oxide production of RAW 264.7 cells and antioxidant activity. Fitoterapia 76(2):194-203.

Choi JN (2002). External activities and team effectiveness: review and theoretical development. Small Group Research 33(2):181-192.

Dehpeur A, Ibrahim zadeh M, Fazel S, Mohammad S (2009). Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Y Aceites 60(4):405-412.

Demmig-Adams B, Adams WW (1996). The role of xanthophylls cycle carotenoids in the protection of photosynthesis. Trends Plant Science 1(1):21-26.

DGPA (2015). Direction Générale de Production Agricole, Ministère de l’Agriculture et de l’Environnement. Tunis, Tunisie .

El-Sayed AA, Razin AM, Swaefy HMF, Mohamed SM, Abou-Aitah KEA (2008). Effect of water stress on yield and bioactive chemical constituents of Tribulus species. Journal of Applied Sciences Research 4(12):2134-2144.

Falcone Ferreyra ML, Rius SP, Casati P (2012). Flavonoids: biosynthesis, biological functions, and biotechnological applications. Frontier in Plant Science 3:222.

Ferrer A, Altabella T, Arró M, Boronata A (2017). Emerging roles for conjugated sterols in plants. Progress in Lipid Research 67:27-37.

Flamini G, Cioni PL, Morelli I (2003). Volatiles from leaves, fruits, and virgin oil from Olea europaea cv. ‘Olivastra Seggianese’ from Italy. Journal Agricultural Food Chemistry 51(5):1382-1386.

Goupy P, Hugues M, Boivin PM, Amiot J (1999). Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. Journal of the Science of Food and Agriculture 79(12):1625-1634.

Grace SC (2005). Phenolics and antioxidants. In: Smirnoff N editor, Antioxidants and reactive oxygen species in plants. Oxford, UK.

Hanci F, Cebeci E (2014). Comparison of salinity and drought stress effects on some morphological and physiological parameters in onion (Allium cepa L.) during early growth phase. Bulgarian Journal of Agricultural Science 21(6):1204-1210.

Kainulainen P, Oksanen J, Holopainen JK, Holopainen T (1992). Effect of drought and water-logging stress on needle monoterpenes of Picea abies (L.). Canadian Journal of Botany 70(8):1613-1616.

Keys A (1995). Mediterranean diet and public health: Personal reflections. The American Journal of Clinical Nutrition 61(6):1321-1323.

Khaleghi E, Arzani K, Moallemi N, Barzegar M (2012). Evaluation of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. ‘Dezful’. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 6:626-639.

Kolo Z (2016). Characterization of the role of a cycloartenol synthase gene (ZMCAS494) in Zea mays responses to drought stress. PhD Thesis, University of the Western Cape.

Lee OH, Lee BY, Lee J, Lee HB, Son JY, Park CS, … Kim YC (2009). Assessment of phenolics enriched extract and fractions of olive leaves and the antioxidant activities. Bioresource Technology 100(23):6107-6113.

Leong LP, Shui G (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry 76(1):69-75.

Lichtenthaler HK, Buschmann C (2001). Chlorophylls and carotenoids measurement and characterization by UV-VIS. In: Lichtenthaler HK, Editor. Current Protocols in Food Analytical Chemistry (CPFA), Wiley, NewYork pp F4-3.

Lin JT, Chen SL, Liu SC, Yang DJ (2009). Effect of harvest time on saponins in yam (Dioscorea pseudojaponica Yamamoto). Journal of Food and Drug Analysis 17(2):116-122.

Llusià J, Peñuelas J (1998). Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Canadian Journal of Botany 76(8):1366-1373.

Luo Y, Qin G, Zhang J, Liang Y, Song Y, Zhao M, … Qu LJ (2011). D-myo-inositol-3-phosphate affects phosphatidyl inositol-mediated endo membrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. The Plant Cell 23(4):1352-1372.

Lv L, Zheng L, Dong D, Xu L, Yin L, Xu Y, … Peng J (2013). Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: 0061 potential new drug for treatment of glioblastoma multiforme. Food and Chemical Toxicology 59:657-669.

Madland E (2013). Extraction, isolation and structure elucidation of saponins from Herni ariaincana. Norwegian University of Science and Technology, NTNU-Trondheim.

Morales M, Zapata S, Jaimes TR, Rosales S, Alzate AF, Maldonado M, … Rojano BA (2017). Mangiferin content, carotenoids, tannins and oxygen radical absorbance capacity (ORAC) values of six mango (Mangifera indica) cultivars from the Colombian Caribbean. Journal of Medicinal Plants Research 11(7):144-152.

Odjegba VJ, Alokolaro AA (2013). Simulated drought and salinity modulates the production of phytochemicals in Acalypha wilkesiana. Journal of Plant Studies 2(2):105-112.

Ozcelik B, Lee JH, Min DB (2003). Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. Journal of Food Sciences 68(2):487-490.

Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, … Reddy MK (2017). Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Frontiers in Plant Science 8:1-13.

Papoti VT, Tsimidou MZ (2009). Impact of sampling parameters on the radical scavenging potential of olive (Olea europaea L.) leaves. Journal of Agricultural and Food Chemistry 57(9):3470-3477.

Petridis A, Therios I, Samouris G (2012). Genotypic variation of total phenol and oleuropein concentration and antioxidant activity of 11 Greek olive cultivars (Olea europaea L.). Hortscience 47(3):339-342.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decalorization assay. Free Radical Biology and Medicine 26(9-10):1231-1237.

Rout NP, Shaw BP (2001). Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Science 160(3):415-423.

Ryan D, Robards K, Lavee S (1999). Change in phenolic content of olive during maturation. International Journal of Food Science and Technology 34(3):265-274.

Sharma P, Dubey RS (2005a). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regulation 46(3):209-221.

Shimoi K, Masuda S, Shen B, Furugori B, Kinae N (1996). Radioprotective effect of antioxidative plant flavonoids in mice. Mutation Research 350(1):153-161.

Silva KDRR, Sirasa MSF (2018). Antioxidant properties of selected fruit cultivars grown in Sri Lanka. Food Chemistry 238:203-208.

Taamalli A, Arráez D, Barrajón E, Ruiz V, Pérez A, Herrero M, … Fernández A (2012). Use of advanced techniques for the extraction of phenolic compounds from Tunisian olive leaves, phenolic composition and cytotoxicity against human breast cancer cells. Food and Chemical Toxicology 50(6):1817-1825.

Talhaoui N, Gómez-Caravaca AM, León L, De la Rosa R, Fernández-Gutiérrez A, Segura-Carretero A (2016). From olive fruits to olive oil: phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. International Journal of Molecular Science 17(3):337.

Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19(6-7):669-675.

Top SM, Preston CM, Dukes JS, Tharayil N (2017). Climate influences the content and chemical composition of foliar tannins in green and senesced tissues of Quercus rubra. Frontiers in Plant Sciences 8:423.

Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K (2007). Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.). Murrill. Food Chemistry 101(1):267-273.

Vrieta C, Russinovae E, Reuzeau C (2013). From squalene to Brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Molecular Plant 6(6):1738-1757.

Wujeska A, Bossinger G, Tausz M (2013). Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis. Tree Physiology 33(10):1018-1029.

Yasukazu O, Takuma S (2008). Antioxidant and photo-antioxidant activities of chalcone derivatives. Journal of the Japan Petroleum Institute51(5):298-308.

Yu H, Zheng L, Yin L, Xu L, Han Y, Youwei QX, … Liu JP (2014). Protective effects of the total saponins from Dioscorea nipponica Makino against carbon tetrachloride-induced liver injury in mice through suppression of apoptosis and inflammation. International Immunopharmacology 19(2):233-244.

Yu L, Halley S, Perret J, Palma M, Wilson J, Qian M (2002). Free radical scavenging properties of wheat extracts. Journal of Agricultural and Food Chemistry 50(6):1619-1624.

Zeitoun MAM, Mansour HMM, Ezzat S, El Sohaimy SA (2017). Effect of pretreatment of olive leaves on phenolic content and antioxidant activity. American Journal of Food Technology 12(2):132-139.

Zhang Y, Giboulot A, Zivy M, Valot B, Jamet E, Albenne C (2011). Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry 72(10):1109-1123.

Published
2020-03-31
How to Cite
BEN MANSOUR-GUEDDES, S., SAIDANA-NAIJA, D., BCHIR, A., & BRAHAM, M. (2020). Climate change effects on phytochemical compounds and antioxidant activity of Olea europaea L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(1), 436-455. https://doi.org/10.15835/nbha48111615
Section
Research Articles