Morpho-physiological Characteristics of Basil (Ocimum basilicum L.) under NaCl-stress and Rhizophagus fasciculatum as NaCl-stress Mitigator

Authors

  • Yuneisy Milagro AGÜERO-FERNÁNDEZ Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur (CU)
  • Luis Guillermo HERNÁNDEZ-MONTIEL Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur (MX) https://orcid.org/0000-0002-8236-1074
  • Bernardo MURILLO-AMADOR Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur (MX) http://orcid.org/0000-0002-9489-4054
  • José Manuel MAZÓN-SUÁSTEGUI Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur (MX)
  • Carlos Michel OJEDA-SILVERA Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur (CU)
  • Daulemys BATISTA-SÁNCHEZ Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur (CU)

DOI:

https://doi.org/10.15835/nbha47411604

Keywords:

arbuscular mycorrhizal fungi (AMF); biomass; colonization; water potential

Abstract

Salinity stress is one of the main problems limiting growth and development of cultivated species. The objective of this study was to assess NaCl-stress basil plants (Ocimum basilicum L.) cv. ‘Nufar’ and to determine whether the mitigating effect of an arbuscular mycorrhizal fungus strain (AMF). A completely randomized factorial design was used considering three NaCl concentration (0, 50 and 100 mM) as factor 1 and presence or absence of AMF (0 and 10 g of inoculum) as factor 2, with four replicates per treatment and four plants per repetition. The assessed response variables were, fresh and dry of aerial part and root, root length, leaf area, relative water content, water potential, plant height, number of spores and mycorrhizal colonization percentage after 20 and 50 days (T20, T50) of the experiment. The results showed greater values in all variables in the control group (0 mM NaCl) than in plants inoculated with R. fasciculatum with T20 and T50; although values decreased as NaCl concentration increased; the tendency to increase was maintained even in at 50 and 100 mM of NaCl with AMF with respect to 50 and 100 mM NaCl without AMF. The AMF colonization percentage decreased as NaCl concentration increased. Nonetheless, the development and growth response for all variables in the inoculated plants with AMF was greater vs non-inoculated, which suggests that basil plant inoculation with AMF has a positive effect in mitigating NaCl stress.

References

Abd-Allah EF, Abeer-Hashem AA, Alqarawi AH, Alwhibi MS (2015b). Alleviation of adverse impact of salt in Phaseolus vulgaris L. by arbuscular mycorrhizal fungi. Pakistan Journal of Botany 47(3):1167-1176.

Abd-Allah EF, Abeer-Hashem AA, Alqarawi AH, Bahkali, Alwhibi MS (2015a). Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences 22(3):274-283.

Abdel-Latef AA, Chaoxing H (2011). Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127(3):228-233.

Al-Khaliel AS (2010). Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant, Soil and Environment 56(7):318-324.

Alqarawi AA, Hashem A, Abd-Allah EF, Alshahrani TS, Al-Huail AA (2014). Effect of salinity on moisture content, pigment system, and lipid composition in Ephedraalata Decne. Acta Biologica Hungarica 65(1):61-71.

Aroca R, Ruiz-Lozano JM, Zamarreño AM, Paza JA, Garcia-Mina JM, Pozo MJ, Lopez-Raeza JA (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology 170(1):47-55.

Batista-Sánchez D, Murillo-Amador B, Nieto-Garibay A, Alcaráz-Meléndez L, Troyo-Dieguéz E, Hernández-Montiel LG, Ojeda-Silvera CM (2017). Mitigación de NaCl por efecto de un bioestimulante en la germinación de Ocimum basilicum L [Mitigation of NaCl by the effect of a biostimulant on the germination of Ocimum basilicum L.]. Terra Latinoamericana 35(4):309-320.

Batista-Sánchez D, Nieto-Garibay A, Alcaraz-Meléndez L, Troyo-Diéguez E, Hernández-Montiel LG, Ojeda-Silvera CM, Murillo-Amador B (2015). Uso del FitoMas-E® como atenuante del estrés salino (NaCl) durante la emergencia y crecimiento inicial de Ocimum basilicum L [Use of FitoMas-E® as an attenuator of saline stress (NaCl) during the emergence and initial growth of Ocimum basilicum L.]. Revista Electrónica Nova Scientia 7(15):265-284.

Bremner JM (1965). Total nitrogen. Methods of soil analysis. Part 3. Agronomy 5. American Society of Agronomy. Madison, Wisconsin, U.S.A. pp 1091-1100.

Briseño-Ruiz SE, Aguilar-García M, Villegas-Espinoza JA (2013). El cultivo de la albahaca [The cultivation of basil] Edit. Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur, México pp 33.

Castellanos JZ, Uvalle-Bueno JX, Aguilar-Santelises A (2000). Manual de interpretación de análisis de suelo y agua. Universidad Autónoma de Chapingo [Interpretation manual for soil and water analysis. Autonomous University of Chapingo]. Estado de México pp 94-97.

Cheng KL, Bray RH (1951). Determination of calcium and magnesium in soil and plant material. Soil Science 72(6):449-458.

Daniels BA, Skipper HD (1982). Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (Ed). Methods and principles of mycorrhizal research. St. Paul, MN, The American Phytopathological Society pp 29-36.

Elhindi KM, El-Din AS, Elgorban AM (2017). The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi Journal of Biological Sciences 24(1):170-179.

Evelin H, Giri B, Kapoor R (2012). Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl stressed Trigonella foenum graecum. Mycorrhiza 22(3):203-217.

Evelin H, Giri B, Kapoor R (2013). Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71-86.

Evelin H, Kapoor R, Giri B (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany 104(7):1263-1280.

Fatma M, Masood MAA, Khan NA (2014). Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environmental and Experimental Botany 107:55-63.

García E (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. Universidad Nacional Autónoma de México, México pp 98.

Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenreider C (2010). Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil 331(1-2):313-327.

Harris-Valle C, Esqueda M, Valenzuela- Soto E, Castellanos A (2011). Tolerancia a sequía y salinidad en Cucurbita pepo. var. pepo asociado con hongos micorrízicos arbusculares del desierto sonorense. Agrociencia 45(8):959-970.

Hashem A, Abd-Allah EF, Alqarawi AA, Dilfuza E (2015). Induction of salt stress tolerance in cowpea (Vigna unguiculata L.) Walp by arbuscular mycorrhizal fungi. Legume Research 38(5):579-58.

Hashem A, Abd-Allah EF, Alqarawi AA, El-Didamony G, Alwhibi Mona S, Egamberdieva D, Ahmad P (2014). Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pakistan Journal of Botany 46(6):2003-2013.

Hodge A, Storer K (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant and Soil 386(1-2):1-19.

Ibrahim AH, Abdel-Fattah GM, Eman FM, Abd El-Aziz MH, Shohr AE (2011). Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. New Phytologist 51(2):261-276.

Iqbal N, Umar S, Khan NA (2015). Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). Journal of Plant Physiology 178:84-91.

Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, … Turnau K (2010). Optimization of culture conditions of Arnica montana L effects of mycorrhizal fungi and competing plants. Mycorrhiza 20(5):293-306.

Khalig S, Vllah Z, Athar H, Khal R (2014). Physiological and biochemical basis of salt tolerance in Ocimum basilicum L. Journal of Medicinal Plants Studies 2(1):18-27.

Khalil HA (2013). Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of grapevines rootstocks to salt stress. Asian Journal of Crop Science 5(4):393-404.

Makri O, Kintzios S (2008). Ocimum sp. (basil): Botany, cultivation, pharmaceutical properties, and biotechnology. Journal of Herbs, Spices and Medicinal Plants 13(3):123-150.

Mendes A, Almeida M, Felipe VFG, Furtado PMF, Feitosa CL, Días EF (2016). Influence of salinity on the development of the banana colonised by arbuscular mycorrhizal fungi. Revista Ciencia Agronómica 47(3):421-428.

Mujica-Pérez Y, Fuentes-Martínez AG (2012). Efecto de la biofertilización con hongos micorrízicos arbusculares (HMA) en el cultivo del tomate en condiciones de estrés abiótico [Effect of biofertilization with arbuscular mycorrhizal fungi (AMF) in tomato cultivation under conditions of abiotic stress]. Cultivos Tropicales 33(4):40-46.

Murillo-Amador B, Yamada S, Yamaguchi T, Rueda-Puente E, Ávila-Serrano N, García-Hernández JL, … Nieto-Garibay A (2007). Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. Journal Agronomy Crop Science 193(6):413-421.

Navarro A, Elia A, Conversa G, Campia P, Mastrorilli M (2012). Potted mycorrhizal carnation plants and saline stress: Growth, quality and nutritional plant responses. Scientia Horticulturae 140:131-139.

NOM-021-SEMARNAT (2000). Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Secretaria de Medio ambiente y Recursos Naturales. Diario Oficial. Segunda Sección [That establishes the specifications of fertility, salinity and soil classification. Studies, sampling and analysis. Secretary of Environment and Natural Resources. Official diary. Second section.] México DF pp 12-13.

Parra-Rivero SM, Maciel-De Sousa NM, Sanabria-Chopite ME, Pineda J (2014). Anatomical description of the arbuscular mycorrhizal fungi colonization in two tree legumes. [Descripción anatómica de la colonización de hongos micorrízicos arbusculares en dos leguminosas arbóreas]. Revista Ciencias Forestales y del Ambiente 24(2):183-196.

Porras-Soriano A, Sorano-Marintin ML, Porras-Piedra A, Azcón P (2009). Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. Journal of Plant Physiology 166(13):1350-1359.

Rivera R, Fernández F, Hernández A, Martín JR, Fernández K (2003). El manejo efectivo de la simbiosis micorrízica, una vía hacia la agricultura sostenible. Estudio de caso: El Caribe [The effective management of mycorrhizal symbiosis, a path towards sustainable agriculture. Case study: The Caribbean] Editorial Agustín García Marrero. La Habana, Cuba pp 166.

Rodríguez YY, Noval BP, Fernández MF, Rodríguez PH (2004). Comparative study of behaviour of six arbuscular mycorrhizal fungi when colonize tomato plants (Lycopersicon esculentum M. var. ‘Amalia’). Ecología Aplicada 3(1-2):162-171.

Ruiz-Lozano JM, Aroca R (2010). Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Seckbach J, Grube M (Eds). Symbioses and stress: Joint ventures in biology, cellular origin, life in extreme habitats and astrobiology. Springer Science Business Media 17:359-374.

Ruiz-Lozano JM, Porcel R, Aroca R (2006). Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of drought-induced plant genes? New Phytologist 171(4):693-698.

Samperio RG (1997). Hidroponia Básica [Basic Hydroponics]. Editorial Diana, pp 176 .

Seema HS, Garampalli RH (2015). Effect of arbuscular mycorrhizal fungi on growth and biomass enhancement in Piper longum L. (Piperaceae). International Journal of Current Microbiology and Applied Sciences 4(1):11-18.

SEMARNAT (2009). El Medio Ambiente en México: En Resumen 2009 [The Environment in Mexico: In Summary 2009] México. (www.semarnat.gob.mx) pp 20-23.

Sharifia M, Ghorbanlib M, Ebrahimzadehc H (2007). Improved growth of salinity stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. Journal of Plant Physiology 164(9):1144-1151.

StatSoft Inc (2011). Statistica. System reference. StatSoft, Inc., Tulsa, Oklahoma, USA pp 1098 .

Swift CE (2002). Mycorrhiza and soil phosphorus levels. Retrieved 04 October 2016 from http://mining.state.co.us/SiteCollectionDocuments/MycorrhizaAndSoilPhosphorusLevels.pdf.

Tomar US, Daniel V, Shrivastava K, Panwar MS, Pant P (2010). Comparative evaluation and antimicrobial activity of Ocimum basilicum L (Labiatae). Journal of Global Pharma Technology 2(5):49-53.

Utobo EB, Ogbodo EN, Nwogbaga AC (2011). Techniques for extraction and quantification of arbuscular mycorrhizal fungi. Libyan Agriculture Research Center Journal International 2(2):68-78.

Qiang-Sheng W, Ying-Ning Z, Xin-Hua H (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum 32(2):297-304.

Wimmer MA, Muehling KH, Läuchli A, Brown PH, Goldbach HE (2016). Interaction of salinity and boron toxicity in wheat (Triticum aestivum L.) [en línea]. In: Horst WJ et al. (Eds). Plant Nutrition, Springer Netherlands pp 426-427.

Wu QS, Zou YN, He XH (2010). Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum 32:297-304.

Yamasaki S, Dillenburg L (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiología Vegetal 11(2):69-75.

Yamato M, Ikeda S, Iwase K (2008). Community of arbuscular mycorrhizal fungi in coastal vegetation on Okinawa Island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18(5):241-249.

Zamudio-González B, López-Pérez L, Alcántara-González, G, González-Eguiarte DR, Ruiz-Corral JA, Castellanos JZ (2004). Delimitación de áreas salinas en el distrito de riego de Caborca [Delimitation of salt areas in the irrigation district of Caborca] Sonora, México. Terra Latinoamericana 22(1):91-97.

Downloads

Published

2019-12-05

How to Cite

AGÜERO-FERNÁNDEZ, Y. M., HERNÁNDEZ-MONTIEL, L. G., MURILLO-AMADOR, B., MAZÓN-SUÁSTEGUI, J. M., OJEDA-SILVERA, C. M., & BATISTA-SÁNCHEZ, D. (2019). Morpho-physiological Characteristics of Basil (Ocimum basilicum L.) under NaCl-stress and Rhizophagus fasciculatum as NaCl-stress Mitigator. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1285–1292. https://doi.org/10.15835/nbha47411604

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha47411604

Most read articles by the same author(s)