Evaluation of the Allelopathic Potential of Leaf Extracts from Dischidia imbricata (Blume) Steud. on the Seedling Growth of Six Test Plants


  • Ramida KRUMSRI University of Kagawa, Faculty of Agriculture, Department of Applied Biological Science, Miki, Kagawa 761-0795 (JP)
  • Sutjaritpan BOONMEE University of Kagawa, Faculty of Agriculture, Department of Applied Biological Science, Miki, Kagawa 761-0795 (JP)
  • Hisashi KATO-NOGUCHI University of Kagawa, Faculty of Agriculture, Department of Applied Biological Science, Miki, Kagawa 761-0795; University of Ehime, The United Graduate School of Agriculture Sciences, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566 (JP)




allelopathic activity; Dischidia imbricata; growth inhibitor; medicinal plant; sustainable agriculture


Dischidia imbricata (Blume) Steud. is a herbaceous plant belonging to the Apocynaceae family. This plant has been reported to possess various pharmacological properties, however, there has been no report related to its allelopathic properties. Therefore, the aqueous methanol extracts of D. imbricata were examined for possible allelopathic activity against the seedling growth of dicotyledonous plants; lettuce (Lactuca sativa L.), cress (Lepidium sativum L.), and alfalfa (Medicago sativa L.), and monocotyledonous plants; barnyard grass (Echinochloa crus-galli (L.) P. Beauv.), Italian ryegrass (Lolium multiflorum Lam.), and timothy (Phleum pratense L.). D. imbricata extracts exhibited a significant inhibition on the seedling growth of all the test plant species at the concentration ≥ 0.01 g dry weight equivalent extract mL-1. The seedling growth of lettuce showed the highest inhibition with D. imbricata extracts followed by alfalfa and cress, whereas the least inhibition was found on the seedling growth of timothy. Concentrations required for 50% inhibition (I50 values) of all the test plant species were in the range of 0.003 to 0.067 g D.W. equivalent extract mL-1 for shoot growth, and 0.018 to 0.026 g D.W. equivalent extract mL-1 for root growth. In addition considering the I50 values, the root growth of the test plant species was more sensitive to D. imbricata extracts than their shoot growth, except cress seedling. These results indicated that D. imbricata may possess allelopathic activity and may contain allelopathic substances.


Abenavoli MR, Lupini A, Oliva S, Sorgonà A (2010). Allelochemical effects on net nitrate uptake and plasma membrane H+-ATPase activity in maize seedlings. Biologia Plantarum 54(1):149-153.

Abrahim D, Francischini AC, Pergo EM, Kelmer-Bracht AM, Ishii-Iwamoto EL (2003). Effects of α-pinene on the mitochondrial respiration of maize seedlings. Plant Physiology and Biochemistry 41(11-12):985-991.

Amb MK, Ahluwalia AS (2016). Allelopathy: potential role to achieve new milestones in rice cultivation. Rice Science 23(4):165-183.

Awan TH, Cruz PCS, Chauhan BS (2015). Agronomic indices, growth, yield-contributing traits, and yield of dry-seeded rice under varying herbicides. Field Crops Research 177:15-25.

Bajwa AA, Mahajan G, Chauhan BS (2015). Nonconventional weed management strategies for modern agriculture. Weed Science 63(4):723-747.

Bari IN, Kato-Noguchi H (2017). Phytotoxic effects of Cerbera manghas L. leaf extracts on seedling elongation of four monocot and four dicot test species. Acta Agrobotanica 70(3):1720.

Bhadoria PBS (2011). Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture 1(1):7-20.

Boonmee S, Iwasaki A, Suenaga K, Kato-Noguchi H (2018). Evaluation of phytotoxic activity of leaf and stem extracts and identification of a phytotoxic substance from Caesalpinia mimosoides Lamk. Theoretical and Experimental Plant Physiology 30(2):129-139.

Boonmee S, Kato-Noguchi H (2017). Allelopathic activity of Acacia concinna pod extracts. Emirates Journal of Food and Agriculture 29(4):250-255.

Cai SL, Mu XQ (2012). Allelopathic potential of aqueous leaf extracts of Datura stramonium L. on seed germination, seedling growth and root anatomy of Glycine max (L.) Merrill. Allelopathy Journal 30(2):235-245.

El-Khatib AA, Barakat NA, Nazeir H (2016). Growth and physiological response of some cultivated species under allelopathic stress of Calotropis procera (Aiton) WT. Applied Science Reports 14(3):237-246.

El-Khawas SA, Shehata MM (2005). The allelopathic potentialities of Acacia nilotica and Eucalyptus rostrata on monocot (Zea mays L.) and dicot (Phaseolus vulgaris L.) plants. Biotechnology 4(1):23-34.

Fang C, Li Y, Li C, Li B, Ren Y, Zheng H, Zeng X, Shen L, Lin W (2015). Identification and comparative analysis of micro RNAs in barnyardgrass (Echinochloacrus-galli) in response to rice allelopathy. Plant, Cell and Environment 38(7):1368-1381.

Gomaa NH, Hassan MO, Fahmy GM, González L, Hammouda O, Atteya AM (2014). Allelopathic effects of Sonchus oleraceus L. on the germination and seedling growth of crop and weed species. Acta Botanica Brasilica 28(3):408-416.

Gulzar A, Siddiqui MB (2017). Allelopathic effect of Calotropis procera (Ait.) R. Br. on growth and antioxidant activity of Brassica oleracea var. botrytis. Journal of the Saudi Society of Agricultural Sciences 16(4):375-382.

Hassan MM, Daffalla HM, Yagoub SO, Osman MG, Gani MEA, Babiker AGE (2012). Allelopathic effects of some botanical extracts on germination and seedling growth of Sorghum bicolor L. Journal of Agricultural Technology 8(4):1423-1469.

Islam AKM, Kato-Noguchi H (2013). Allelopathic potential of five Labiatae plant species on barnyard grass (Echinochloa crus-galli’). Australian Journal of Crop Science 7(9):1369-1374.

Islam MS, Iwasaki A, Suenaga K, Kato-Noguchi H (2017). 2-Methoxystypandrone, a potent phytotoxic substance in Rumex maritimus L. Theoretical and Experimental Plant Physiology 29(4):195-202.

Islam MS, Iwasaki A, Suenaga K, Kato-Noguchi H (2017). Isolation and identification of two potential phytotoxic substances from the aquatic fern Marsilea crenata. Journal of Plant Biology 60(1):75-81.

Khanh TD, Hong NH, Nhan DQ, Kim SL, Chung IM, Xuan TD (2006). Herbicidal activity of Stylosanthes guianensis and its phytotoxic components. Journal of Agronomy and Crop Science 192(6):427-433.

Koocheki A, Taherian AR, Bostan A (2013). Studies on the steady shear flow behavior and functional properties of Lepidium perfoliatum seed gum. Food Research International 50(1):446-456.

Lin D, Sugitomo Y, Dong Y, Terao H, Matsuo M (2006). Natural herbicidal potential of saururaceae (Houttuynia cordata Thunb) dried powders on paddy weeds in transplanted rice. Crop Protection 25(10):1126-1129.

Livshultz T (2003). Dischidia cleistantha (Apocynaceae, Asclepiadoideae): A new Philippine endemic. Novon 13(1):89-96.

Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005). Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology 31(5):1187-1203.

Poonpaiboonpipat T, Pangnakorn U, Suvunnamek U, Teerarak M, Charoenying P, Laosinwattana C (2013). Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyardgrass (Echinochloa crus-galli). Industrial Crops and Products 41:403-407.

Rai VK, Gupta SC, Singh B (2003). Volatile monoterpenes from Prinsepia utilis L. leaves inhibit stomatal opening in Vicia faba L. Biologia Plantarum 46(1):121-124.

Rawat LS, Maikhuri RK, Negi VS, Bahuguna YM, Pharswan DS, Maletha A (2016). Allelopathic performance of medicinal plants on traditional oilseed and pulse crop of Central Himalaya, India. National Academy Science Letters 39(3):141-144.

Rial C, Novaes P, Varela RMG, Molinillo JM, Macias FA (2014). Phytotoxicity of cardoon (Cynara cardunculus) allelochemicals on standard target species and weeds. Journal of Agricultural and Food Chemistry 62(28):6699-6706.

Rice EL (1984). Allelopathy, 2nd edition. Academic Press, Orlando, Florida pp 67-68.

Shinwari M I, Iida OSAMU, Shinwari MI, Fujii Y (2017). Evaluation of phytodiversity for allelophatic activity and application to minimize climate change impact: Japanese medicinal plants. Pakistan Journal of Botany 49:139-144.

Silalahi M, Walujo EB, Supriatna J, Mangunwardoyo W. (2015). The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia. Journal of Ethnopharmacology 175:432-443.

Sodaeizadeh H, Rafieiolhossain M, Van Damme P (2010). Herbicidal activity of a medicinal plant, Peganum harmala L., and decomposition dynamics of its phytotoxins in the soil. Industrial Crops and Products 31(2):385-394.

Teerarak M, Charoenying P, Laosinwattana C (2012). Physiological and cellular mechanisms of natural herbicide resource from Aglaia odorata Lour. on bioassay plants. Acta Physiologiae Plantarum 34(4):1277-1285.

Travlos IS, Paspatis E, Psomadeli E (2008). Allelopathic potential of Oxalis pescaprae tissues and root exudates as a tool for integrated weed management. Journal of Agronomy 7(2):202-205.

Ye CP, Zhang MC, Yang YF (2013). Photosynthetic inhibition on the microalga Phaeodactylum tricornutum by the dried macroalga Gracilaria tenuistipitata. In: Materials Science Forum. Trans Tech Publications, pp 725-731.

Yuan Z, Zheng X, Zhao Y, Liu Y, Zhou S, Wei C, Hu Y, Shao H (2018). Phytotoxic compounds isolated from leaves of the invasive weed Xanthium spinosum. Molecules 23(11):2840.

Zakaria W, Razak AR (1990). Effects of groundnut plant residues on germination and radicle elongation of four crop species. Pertanika 13(3):297-302.

Zaman F, Islam MS, Kato-Noguchi H (2018). Allelopathic activity of the Oxalis europea L. extracts on the growth of eight test plant species. Research on Crops 19(2):304-309.




How to Cite

KRUMSRI, R., BOONMEE, S. ., & KATO-NOGUCHI , H. . (2019). Evaluation of the Allelopathic Potential of Leaf Extracts from Dischidia imbricata (Blume) Steud. on the Seedling Growth of Six Test Plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(4), 1019–1024. https://doi.org/10.15835/nbha47411598



Research Articles
DOI: 10.15835/nbha47411598