Estimating Nitrogen and Chlorophyll Status of Romaine Lettuce Using SPAD and at LEAF Readings

  • Rodrigo Omar MENDOZA-TAFOLLA Universidad Autónoma del Estado de Morelos, Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Av. Universidad 1001, 62209 Cuernavaca, Morelos http://orcid.org/0000-0002-8079-1468
  • Porfirio JUAREZ-LOPEZ Universidad Autónoma del Estado de Morelos, Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Av. Universidad 1001, 62209 Cuernavaca, Morelos http://orcid.org/0000-0002-4241-1110
  • Ronald-Ernesto ONTIVEROS-CAPURATA Cátedra CONACYT- Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, 62550 Jiutepec, Morelos https://orcid.org/0000-0002-5094-0469
  • Manuel SANDOVAL-VILLA Colegio de Postgraduados, Edafología, Campus Montecillo 56230, Montecillo, Estado de México http://orcid.org/0000-0002-0228-0734
  • Iran ALIA-TEJACAL Universidad Autónoma del Estado de Morelos, Posgrado en Ciencias Agropecuarias y Desarrollo Rural, Facultad de Ciencias Agropecuarias, Av. Universidad 1001, 62209 Cuernavaca, Morelos http://orcid.org/0000-0002-2242-2293
  • Gelacio ALEJO-SANTIAGO Universidad Autónoma de Nayarit, Unidad Académica de Agricultura, Carretera Tepic-Compostela Km. 9, 63780, Xalisco, Nayarit http://orcid.org/0000-0003-2441-9116
Keywords: above fresh matter; crop nutrition; Lactuca sativa; non-destructive sampling; soilless culture

Abstract

Nitrogen (N) is an essential nutrient for plant growth and development and is especially important in the production of high quality leafy green vegetables. In this experiment, leaf N concentration, chlorophyll concentration (Chl) and weight above fresh matter (AFM) of romaine lettuce (Lactuca sativa L. var. longifolia) were estimated by correlations between in situ SPAD and atLEAF readings. Lettuce was grown in high tunnels during 42 days and was irrigated at five nitrogen levels: 0, 4, 8, 12 and 16 mEq·L-1 of NO3-, based on the Steiner nutrient solution. The N concentration, Chl concentration and AFM were determined in the laboratory, while SPAD and atLEAF readings were measured in situ weekly. SPAD readings had high, positive and significant linear correlations with N (R2 = 0.90), Chl (R2 = 0.97) and AFM (R2 = 0.98); atLEAF readings had a similar linear correlation with N (R2 = 0.91), Chl (R2 = 0.92) and AFM (R2 = 0.97). Besides, SPAD and atLEAF readings had high, positive, and significant linear correlation (R2 = 0.96). Thus, SPAD and atLEAF meters can be used to non-destructively and accurately estimate the N status of lettuce, in a reliable and quick manner during the crop production cycle. In addition, atLEAF is currently more affordable than SPAD.

 

*********

In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 3, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue.

*********

Metrics

Metrics Loading ...

References

Abdelhamidg M, Horiuchi T, Oba S (2003). Evaluation of the SPAD value in Faba bean (Vicia faba L.) leaves in relation to different fertilizer applications. Plant Production Science 6(3):185-189.

Basyouni R, Dunn B (2017). Use of reflectance sensors to monitor plant nitrogen status in horticultural plants. Retrieved 2019 March 2 from http://factsheets.okstate.edu/documents/hla-6719-use-of-optical-sensors-to-monitor-plant-nitrogen-status-in-horticultural-plants/.

Basyouni R, Dunn BL, Goad C (2015). Use of nondestructive sensors to assess nitrogen status in potted poinsettia (Euphorbia pulcherrima L. (Willd. ex Klotzsch)) production. Scientia Horticulturae 192:47-53.

Calderón-Medellín LA, Bernal-Rozo AM, Pérez-Trujillo MM (2011). Ensayo preliminar sobre la utilización de un medidor portátil de clorofila para estimar el nitrógeno foliar en orégano (Origanum vulgare L.). Revista Facultad de Ciencias Básicas 7(2):150-165.

Cho YY, Oh S, Oh MM, Son JE (2007). Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value. Scientia Horticulturae 111(4):330-334.

Cunha ARd, Katz I, Sousa ADP, Martinez RA (2015). Índice SPAD en el crecimiento y desarrollo de plantas de lisianthus en función de diferentes dosis de nitrógeno en ambiente protegido. Idesia (Arica) 33:97-105.

Dey AK, Sharma M, Meshram MR (2016). An analysis of leaf chlorophyll measurement method using chlorophyll meter and image processing technique. Procedia Computer Science 85:286-292.

Dou Z, Cui L, Li J, Zhu Y, Gao C, Pan X, . . . Li W (2018). Hyperspectral estimation of the chlorophyll content in short-term and long-term restorations of mangrove in Quanzhou Bay Estuary, China. Sustainability 10(4):1127.

Dunn BL, Singh H, Payton M, Kincheloe S (2018a). Effects of nitrogen, phosphorus, and potassium on SPAD-502 and atLEAF sensor readings of Salvia. Journal of Plant Nutrition 41(13):1674-1683.

Dunn BL, Singh H, Goad C (2018b). Relationship between chlorophyll meter readings and nitrogen in poinsettia leaves. Journal of Plant Nutrition 41(12):1566-1575.

Fenech-Larios L, Troyo-Diéguez E, Trasviña-Castro M, Ruiz-Espinoza F, Beltrán-Morales A, Murillo-Amador B, . . . Zamora-Salgado S (2009). Relación entre un método no destructivo y uno de extracción destructivo, para medir el contenido de clorofila en hojas de plántula de albahaca (Ocimum basilicum L). Universidad y Ciencia 25(1):99-102.

Ferreira M, Ferreira G, Fontes P, Dantas J (2006). Índice SPAD e teor de clorofila no limbo foliar do tomateiro em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Revista Ceres 53:83-92.

Food and Agriculture Organization of the United Nations. (1998). FAOSTAT statistics database. Retrieved 2019 March 02 from: https://search.library.wisc.edu/catalog/999882363002121.

Gianquinto G, Goffart JP, Olivier M, Guarda G, Colauzzi M, Dalla Costa L, … Mackerron DKL (2004). The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Research 47(1-2):35-80.

Gitelson AA, Gritz Y, Merzlyak MN (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology 160(3):271-282.

Hebbar KB, Subramanian P, Sheena TL, Shwetha K, Sugatha P, Arivalagan M, Varaprasad PV (2016). Chlorophyll and nitrogen determination in coconut using a non-destructive method. Journal of Plant Nutrition 39(11):1610-1619.

Huang L, Yang J, Cui X, Yang H, Wang S, Zhuang H (2016). Synergy and transition of recovery efficiency of nitrogen fertilizer in various rice genotypes under organic farming. Sustainability 8(9):854.

Hurtado SMC, Silva CA, Resende ÁVd, Corazza EJ, Shiratsuchi LS, Higashikawa FS (2010). Sensibilidade do clorofilômetro para diagnóstico nutricional de nitrogênio no milho. Ciência e Agrotecnologia 34:688-697.

Kalaji HM, Dąbrowski P, Cetner MD, Samborska IA, Łukasik I, Brestic M, … Panchal BM (2017). A comparison between different chlorophyll content meters under nutrient deficiency conditions. Journal of Plant Nutrition 40(7):1024-1034.

Kalra Y (1997). Handbook of reference methods for plant analysis. CRC press, Boca Raton.

León AP, Viña SZ, Frezza D, Chaves A, Chiesa A (2007). Estimation of chlorophyll contents by correlations between SPAD-502 meter and chroma meter in butterhead lettuce. Communications in Soil Science and Plant Analysis 38(19-20):2877-2885.

Liu YJ, Tong YP, Zhu YG, Ding H, Smith FA (2006). Leaf chlorophyll readings as an indicator for spinach yield and nutritional quality with different nitrogen fertilizer applications. Journal of Plant Nutrition 29(7):1207-1217.

Loh FCW, Grabosky JC, Bassuk NL (2002). Using the SPAD 502 meter to assess chlorophyll and nitrogen content of benjamin fig and cottonwood leaves. HortTechnology 12(4):682-686.

Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae 182:124-133.

Mackinney G (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140(2):315-322.

Martín I, Alonso N, López MC, Prieto M, Cadahía C, Eymar E. (2007). Estimation of leaf, root, and sap nitrogen status using the SPAD-502 chlorophyll meter for ornamental shrubs. Communications in Soil Science and Plant Analysis 38(13-14):1785-1803.

Mercado-Luna A, Rico-García E, Lara-Herrera A, Soto-Zarazúa G, Ocampo-Velázquez R, Guevara-González R, . . . Torres-Pacheco I (2010). Nitrogen determination on tomato (Lycopersicon esculentum Mill.) seedlings by color image analysis (RGB). African Journal of Biotechnology 9(33):5326-5332.

Noumedem JAK, Djeussi DE, Hritcu L, Mihasan M, Kuete V (2017). Chapter 20 - Lactuca sativa. In: Kuete V (Ed). Medicinal spices and vegetables from Africa. Academic Press, London, pp 437-449.

Padilla F, Gallardo M, Peña-Fleitas M, de Souza R, Thompson R (2018a). Proximal optical sensors for nitrogen management of vegetable crops: a review. Sensors 18(7).

Padilla F, de Souza R, Peña-Fleitas MT, Gallardo M, Giménez C, Thompson RB (2018b). Different responses of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Frontiers in Plant Science 9:1752.

Parks SE, Irving DE, Milham PJ (2012). A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. Scientia Horticulturae 134:1-6.

Peng S, Yuan, S (2017). Exploring the trends in nitrogen input and nitrogen use efficiency for agricultural sustainability. Sustainability 9(10):1905.

Ruiz-Espinoza FH, Murillo-Amador B, García-Hernández JL, Fenech-Larios L, Rueda-Puente EO, Troyo-Diéguez E, . . . Beltrán-Morales A (2010). Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. Journal of Plant Nutrition 33(3):423-438.

SIAP (2019). Servicio de Información Agroalimentaria y Pesquera. Retrieved 2019 March 02 from https://www.gob.mx/siap.

OEC (2019). The Observatory of Economic Complexity. Lechuga. Retrieved 2019 March 02 from https: // atlas.media. mit. Edu /es/profile/hs92/0705/.

Uddling J, Gelang-Alfredsson J, Piikki K, Pleijel H (2007). Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research 91(1):37-46.

von Wettstein D (1957). Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Experimental Cell Research 12(3):427-506.

Westerveld SM, McKeown AW, McDonald MR, Scott-Dupree CD (2003). Chlorophyll and nitrate meters as nitrogen monitoring tools for selected vegetables in southern Ontario. Acta Horticulturae 627:259-266.

Yamamoto A, Nakamura T, Adu-Gyamfi JJ, Saigusa M (2002). Relation between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). Journal of Plant Nutrition 25(10):2295-2301.

Zebarth BJ, Younie M, Paul JW, Bittman S (2002). Evaluation of leaf chlorophyll index for making fertilizer nitrogen recommendations for silage corn in a high fertility environment. Communications in Soil Science and Plant Analysis 33(5-6):665-684.

Zhu J, Tremblay N, Liang Y (2012). Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Canadian Journal of Soil Science 92(4):645-648.

Published
2019-05-22
How to Cite
MENDOZA-TAFOLLA, R. O., JUAREZ-LOPEZ, P., ONTIVEROS-CAPURATA, R.-E., SANDOVAL-VILLA, M., ALIA-TEJACAL, I., & ALEJO-SANTIAGO, G. (2019). Estimating Nitrogen and Chlorophyll Status of Romaine Lettuce Using SPAD and at LEAF Readings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3). https://doi.org/10.15835/nbha47311525
Section
Research Articles