Nutritional Value of Garden Dill (Anethum graveolens L.), Depending on Genotype

Authors

  • Anita BIESIADA Wroclaw University of Environmental and Life Sciences, Faculty of Life Sciences and Technology, Department of Horticulture, Wroclaw (PL) https://orcid.org/0000-0003-2354-5276
  • Kamil KĘDRA Wroclaw University of Environmental and Life Sciences, Faculty of Life Sciences and Technology, Department of Horticulture, Wroclaw (PL)
  • Katarzyna GODLEWSKA Wroclaw University of Environmental and Life Sciences, Faculty of Life Sciences and Technology, Department of Horticulture, Wroclaw (PL)
  • Antoni SZUMNY Wroclaw University of Environmental and Life Sciences, Faculty of Biotechnology and Food Science, Department of Chemistry, Wrocław (PL)
  • Agnieszka NAWIRSKA-OLSZAŃSKA Wroclaw University of Environmental and Life Science, Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wroclaw (PL) https://orcid.org/0000-0002-9417-767X

DOI:

https://doi.org/10.15835/nbha47311395

Keywords:

antioxidant activity; chemical composition; garden dill; genotype; yield

Abstract

The yield, chemical composition and antioxidant activity of eight genotypes (‘Krezus’, ‘Turkus’, ‘Kozak’, ‘Szmaragd’, ‘Lukullus’, ‘Herkules’, ‘Ambrozja’, ‘Moravan’) of garden dill (Anethum graveolens L.) biomass was estimated. Field experiments were conducted in 2011-2013 in Poland. The crop lasted 44 days and plants were collected at the 4-5 true leaf stage (a bunch harvest). The highest marketable yield was obtained for ‘Krezus’ and ‘Szmaragd’ cultivars (1.18 kg·m-2), while the lowest for ‘Herkules’ (0.53 kg·m-2). The dry matter of leaves ranged from 15.17% (‘Ambrozja’) to 19.27% (‘Krezus’). The study also proved that the genotype influenced the content of chlorophylls a+b, e.g. 1.10 g·kg-1 (‘Moravan’) and 0.78 g·kg-1 (‘Lukullus’), respectively carotenoids: 21.43 mg·100 g-1 (‘Moravan’) and 11.78 mg·100 g-1 (‘Szmaragd’). The content of nitrates (371.48 mg·kg-1 ‘Lukullus’ - 110 mg·kg-1 ‘Szmaragd’), K (11.30% ‘Moravan’ - 5.37% ‘Kozak’), Ca (2.06% ‘Turkus’ - 1.77% ‘Kozak’), and oils (99.13% ‘Lukullus’ - 93.82% ‘Ambrozja’) was also varied. In most cases the content of Mg, P, sugars and ascorbic acid was on similar level. The antioxidant activity was significantly different between tested groups (12.22 µM·g-1 ‘Turkus’ - 6.27 µM·g-1 ‘Krezus’). The presented research proved that the genotype of garden dill affects yield and chemical composition of plants.

References

Berman J, Zorrilla-Lopez U, Farre G, Zhu CF, Sandmann G, Twyman RM, … Christou P (2015). Nutritionally important carotenoids as consumer products. Phytochemistry Reviews 14(5):727-743.

Bondet V, Brand-Williams W, Berset C (1997). Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. Lebensmittel-Wissenschaft & Technologie 30(6):609-615.

Bowes KM, Zheljazkov VD, Caldwell CD, Pincock JA, Roberts JC (2004). Influence of seeding date and harvest stage on yields and essential oil composition of three cultivars of dill (Anethum graveolens L.) grown in Nova Scotia. Canadian Journal of Plant Science 84(4):1155-1160.

Callan NW, Johnson DL, Westcott MP, Welty LE (2007). Herb and oil composition of dill (Anethum graveolens L.): Effects of crop maturity and plant density. Industrial Crops and Products 25(3):282-287.

Commission Regulation (2006). Commission Regulation (EC) No 1881/2006 of 19 December 2006: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN.

Dec D, Wołejko E, Kubicka H, Matusiewicz M, Żylińska B (2008). Zawartość azotanów (III) i (V) w wybranych roślinach przyprawowych pochodzących z handlu i ogródków przydomowych [The content of nitrates (III) and (V) in selected spice plants from trade and home gardens]. Ochrona Środowiska i Zasobów Naturalnych 35/36:255-259.

El-Zaeddi H, Martinez-Tome J, Calin-Sanchez A, Burlo F, Carbonell-Barrachina AA (2016). Volatile composition of essential oils from different aromatic herbs grown in Mediterranean regions of Spain. Foods 5(2):1-13.

El-Zaeddi H, Martinez-Tome J, Calin-Sanchez A, Burlo F, Carbonell-Barrachina AA (2017). Irrigation dose and plant density affect the volatile composition and sensory quality of dill (Anethum graveolens L.). Journal of the Science of Food and Agriculture 97(2):427-433.

Farzadfar S, Zarinkamar F Hojati M (2017). Magnesium and manganese affect photosynthesis, essential oil composition and phenolic compounds of Tanacetum parthenium. Plant Physiology and Biochemistry 112:207-217.

Gammone MA, Riccioni G, D'Orazio N (2015). Marine carotenoids against oxidative stress: Effects on human health. Marine Drugs 13(10):6226-6246.

Garcez JJ, Barros F, Lucas AM, Xavier VB, Fianco AL, Cassel E, Vargas RMF (2017). Evaluation and mathematical modeling of processing variables for a supercritical fluid extraction of aromatic compounds from Anethum graveolens. Industrial Crops and Products 95:733-741.

Ghassemi-Golezani K, Zehtab-Salmasi S, Dastborhan S (2011). Changes in essential oil content of dill (Anethum graveolens) organs under salinity stress. Journal of Medicinal Plants Research 5(14):3142-3145.

Hajhashemi V, Abbasi N (2008). Hypolipidemic activity of Anethum graveolens in rats. Phytotherapy Research 2293):372-375.

Huang DL, Gong XM, Liu YG, Zeng GM, Lai C, Bashir H, … Wan J (2017). Effects of calcium at toxic concentrations of cadmium in plants. Planta 245(5):863-873.

Jang J-C, Sheen J (1994). Sugar sensing in higher plants. The Plant Cell 6(11):1665-1679.

Karkleliene R, Dambrauskiene E, Juskeviciene D, Radzevicius A, Rubinskiene M, Viskelis P (2014). Productivity and nutritional value of dill and parsley. Horticultural Science 41(3):131-137.

Kawecka M, Dyduch J (2006). Ocena cech biometrycznych i potencjału plonotwórczego roślin kilku odmian kopru ogrodowego (Anethum graveolens L.) w uprawie polowej na zbiór pęczkowy. Ocena potencjału plonotwórczego [Evaluation of biometric features and yield potential of plants of several garden dill varieties (Anethum graveolens L.) in field cultivation for bunches. Evaluation of yield potential]. Acta Agrophysica 8(3):611-617.

Kka N, Rookes J, Cahill D (2017). Quantitation of ascorbic acid in Arabidopsis thaliana reveals distinct differences between organs and growth phases. Plant Growth Regulation 81(2):283-292.

Liang D, Zhu TT, Ni ZY, Lin LJ, Tang Y, Wang ZH, … Xia H (2017). Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development. PloS One 12(2):1-16.

Magwaza LS, Mditshwa A, Tesfay SZ, Opara UL (2017). An overview of preharvest factors affecting vitamin C content of citrus fruit. Scientia Horticulturae 216:12-21.

Naidu MM, Vedashree M, Satapathy P, Khanum H, Ramsamy R, Hebbar HU (2016). Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chemistry 192:849-856.

Nowosielski O (1988). Metody oznaczania potrzeb nawożenia roślin ogrodniczych [Methods for determining the needs of fertilizing horticultural plants]. PWRiL, Warszawa.

Olle M, Bender I (2010). The content of oils in umbelliferous crops and its formation. Agronomy Research 8(3):687-696.

PN-A-04019 (1998). Produkty spożywcze - Oznaczanie zawartości witaminy C [Food products - Determination of vitamin C content].

Rana VS, Blazquez MA (2014). Chemical composition of the essential oil of Anethum graveolens aerial parts. Journal of Essential Oil Bearing Plants 17(6):1219-1223.

Rădulescu V, Popescu ML, Ilieş DC (2010). Chemical composition of the volatile oil from different plant parts of Anethum graveolens L. (Umbelliferae) cultivated in Romania. Farmacia 58(5):594-600.

Rumińska A, Suchorska K, Węglarz Z (1990). Rośliny lecznicze i specjalne [Medicinal and special plants]. SGGW AR Warszawa.

Saini RK, Nile SH, Park SW (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International 76:735-750.

Sharma OP, Bhat TK (2009). DPPH antioxidant assay revisited. Food Chemistry 113(4):1202-1205.

Stan M, Soran ML, Marutoiu C (2014). Extraction and HPLC determination of the ascorbic acid content of three indigenous spice plants. Journal of Analytical Chemistry 69(10):998-1002.

Tamme T, Reinik M, Roasto M, Juhkam K, Tenno T, Kiis A (2006). Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Additives and Contaminants 23(4):355-361.

Telesiński A, Grzeszczuk M, Jadczak D, Wysocka G, Onyszko M (2013). Ocena zmian zawartości azotanów (V) w wybranych ziołach przyprawowych w zależności od sposobu ich utrwalenia i czasu przechowywania [Evaluation of changes in the content of nitrates (V) in selected spice herbs depending on the method of their fixation and storage time]. Żywność. Nauka. Technologia. Jakość 5(90):168-176.

Weisany W, Raei Y, Pertot I (2015). Changes in the essential oil yield and composition of dill (Anethum graveolens L.) as response to arbuscular mycorrhiza colonization and cropping system. Industrial Crops and Products 77:295-306.

Yen GC, Chen HY (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry 43(1):27-32.

Zheljazkov VD, Craker LE, Xing BS (2006). Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany 58(1-3):9-16.

Downloads

Published

2019-05-31

How to Cite

BIESIADA, A., KĘDRA, K., GODLEWSKA, K., SZUMNY, A., & NAWIRSKA-OLSZAŃSKA, A. (2019). Nutritional Value of Garden Dill (Anethum graveolens L.), Depending on Genotype. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 784–791. https://doi.org/10.15835/nbha47311395

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha47311395