Lithothamnion calcareum Nanoparticles Increase Growth of Melon Plants

  • Andreia M.P. NEGREIROS Universidade Federal Rural do Semi-Árido, Centro de Ciências Agrárias, 59625-900 Mossoró, Rio Grande do Norte http://orcid.org/0000-0002-9544-2527
  • Rui SALES JÚNIOR Universidade Federal Rural do Semi-Árido, Centro de Ciências Agrárias, 59625-900 Mossoró, Rio Grande do Norte http://orcid.org/0000-0001-9097-0649
  • Francisco F. MAIA JÚNIOR Universidade Federal Rural do Semi-Árido, Centro de Ciências Agrárias, 59625-900 Mossoró, Rio Grande do Norte http://orcid.org/0000-0001-7082-2112
  • Rodolfo B. SILVA Universidade Estadual do Rio Grande do Norte, Laboratório de Física, 59610-090 Mossoró - Rio Grande do Norte
  • José A.P. COSTA Universidade Estadual do Rio Grande do Norte, Laboratório de Física, 59610-090 Mossoró - Rio Grande do Norte
  • Erika V. MEDEIROS Universidade Federal Rural de Pernambuco, Departamento de Agronomia, 52171-000, Garanhuns, Pernambuco http://orcid.org/0000-0001-5543-9414
Keywords: application intervals, calcareous algae, Cucumis melo, fertilizer, formulations, powder-micronized

Abstract

The application of alternative fertilizers to the soil in a sustainable way in order to supply nutrients to plants is important for growers and for the environment. Calcareous algae, Lithothamnion calcareum (Lit), is considered an alternative fertilizer because it is rich in nutrients, particularly magnesium and calcium, that are essential for plants. The objective of this study was to investigate the effect of different formulations, doses and fertilization intervals of L. calcareum on growth of melon plants. Two experiments were performed. The first experiment aimed to evaluate the effect of various formulations and doses of Lit on the growth of melon plants. The second experiment was carried out to evaluate the use of formulations and fertilization intervals of Lit. Formulations and doses of Lit had a significant effect on the efficiency in the development of melon plants. No impact was observed when using a concentrated suspension of Lit. However, four applications of Lit nanoparticle formulations every 7 days increased the growth of melon plants at doses close to 1 kg ha-1. We provide the first data related to beneficial effects on melon growth of L. calcareum, in different formulations, application intervals and doses, applied to red-yellow soil.

Metrics

Metrics Loading ...

Author Biography

Francisco F. MAIA JÚNIOR, Universidade Federal Rural do Semi-Árido, Centro de Ciências Agrárias, 59625-900 Mossoró, Rio Grande do Norte

References

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711-728.

Araújo POLC, Gonçalves FC, Ramos JD, Chalfun NNJ, Carvalho GJ (2007). Growth and percentage of emergence of citrumeleiro “Swingle” seedlings in relation to substrates and doses of Lithothamnium based correctives, after a hundred days from ‘Swingle’. Ciência e Agrotecnologia 31:982-988.

Carlos AC, Sakomura NK, Pinheiro SRF, Toledano FMM, Giacometti R, Silva Júnior JW (2011). Use of algae Lithothamnium calcareum as alternative source of calcium in diets for broiler chickens. Ciência e Agrotecnologia 35:833-839.

Cavalcanti VMM (2011). Plataforma Continental: A última fronteira da mineração brasileira [Continental Shelf: The last frontier of Brazilian mining]. Departamento Nacional de Produção Mineral, Brasília, Brazil.

Costa AC, Ramos JD, Silva FOR, Menezes TP, Moreira RA, Duarte MH (2015). Organic fertilizer and Lithothamnium on the cultivation of red pitaya. Semina: Ciências Agrárias 36:77-88.

Costa Neto JM, Teixeira RG, Sá MJC, Lima AE, Jacinto-Aragão GS, Teixeira MW, Martins Filho EF, Toríbio JMML, Azevedo AS (2010). Seaweed flour (“Lithothamnium calcareum”) as a mineral supplement in the bone healing of a cortical autograft in dogs. Revista Brasileira de Saúde e Produção Animal 11:217-230.

Cruz MCM, Hafle O, Ramos JD, Ramos OS (2008). Development of tangerine tree rootstock ‘Cleópatra’. Revista Brasileira de Fruticultura 30:471-475.

Dias GTM (2000). Granulados bioclásticos – algas calcárias [Marine Bioclasts - Calcareous Algae]. Revista Brasileira de Geofísica 18:307-318.

Evangelista AWP, Alves Júnior J, Melo PC (2013). Response of coffee crop to irrigation levels and fertilization with Alfertil. Revista Brasileira de Engenharia Agrícola e Ambiental 17:392-396.

Filgueira FAR (2008). Novo Manual de Olericultura: agrotecnologia moderna na produção e comercialização de hortaliças [New Manual of Olericultura: modern agro-technology in the production and commercialization of vegetables]. Universidade Federal de Viçosa, Viçosa, Brazil.

Goetz P (2008). Phytothérapie de l’ostéoporose. Phytothérapie 6:33-38.

Graham JE, Wilcox LW, Graham LE (2008). Algae. Benjamin Cummings: San Francisco, USA.

Guiry MD, Guiry GM (2017). AlgaeBase. World-wide electronic publication. National University of Ireland, Galway. Retrieved September 13, 2017 from http://www.algaebase.org.

Hafle OM, Santos VA, Ramos JD, Cruz MCM, Melo PC (2009). Production of seedlings of papaya tree using Bokashi and Lithothamnium. Revista Brasileira de Fruticultura 31:245-251.

Hagg FM, Erasmus LJ, Van der Veen RH, Haasbroek E, Taylor Oguey C (2013). Phytonutrients or calcified marine algae as natural alternatives to monensin in beef feedlot diets. Journal of Animal Science 91:138.

Kempf M (1974). Perspectives d’exploitation des fonds de maerl du Plateau Continental du NE du Brésil [Prospects for Exploitation of maerl funds from the Continental Shelf NE of Brazil]. II Coll. Intern. Exploitation des Oceans. Bordeaux, France 2.

Le Bleu P (1983). Contribution à l’étude des algues marines en Bretagne: bilan de leur utilisation en milieu agricole [Contribution to the study of marine algae in Brittany: assessment of their use in agriculture]. France, Tours.

Lopes NM, Pereira RAN, Pereira MN (2013). Intake, milk yield, and blood acid-base balance of cows in response to marine algae meal. Journal of Animal Science 91:29.

Melo PC, Furtini Neto AE (2003). Evaluation of Lithothamnium as corrective of soil acidity and source of nutrients for bean plants. Ciência e Agrotecnologia 27:508-519.

Mendonça V, Orbes MY, Abreu NAA, Ramos JD, Teixeira GA, Souza HA (2006). Quality of yellow passion fruit formatted in substrate with different level of Lithothamniun. Ciência e Agrotecnologia 30:900-906.

Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JAC, Cunha TJF, Oliveira JB (2013). Sistema brasileiro de classificação de solos [Brazilian system of soil classification]. Empresa Brasileira de Pesquisa Agropecuária (3th ed), Brasília, Brazil.

Schlegel P, Gutzwiller A (2017). Effect of dietary calcium level and source on mineral utilization by piglets fed diets containing exogenous phytase. Journal of Animal Physiology and Animal Nutrition 101:165-174.

Silva FAS, Azevedo CAV (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research 11:3733-3740.

Souza HA, Mendonça V, Ramos JD, Ferreira EA, Alencar RD (2007). Doses de Lithothamnium e diferentes substratos na produção de mudas de maracujazeiro ‘doce’ [Substrates composition and Lithothamnium in the production of ‘sweet’ passion fruit seedlings]. Revista Caatinga 20:24-30.

Teixeira GA, Souza HA, Mendonça V, Ramos JD, Chalfun NNJ, Ferreira E, Melo PC (2009). Produção de mudas de mamoeiro ‘formosa’ em substratos com doses de Lithothamnium [Production of papaya changes in substrates with Lithothamnium]. Revista da Faculdade de Zootecnia, Veterinária e Agronomia 16:220-229.

Thangavelu K, Subramani KB (2016). Sustainable biopolymer fibers - production, properties and applications. In: Muthu SS, Gardetti M (Eds). Sustainable Fibres for Fashion Industry. Springer Singapore pp 109-140.

Ucrós NS, Ferreira WM, Torres RCS, Borges NF, Silveira SS, Rezende CMF (2012). Lithothamnium calcareum no tratamento de osteotomia experimental em coelhos (Oryctolagus cuniculus) [Lithothamnium calcareum in the treatment of experimental osteotomy: In rabbits (Oryctolagus cuniculus)]. Arquivo Brasileiro de Medicina Veterinária e Zootecnia 64:615-622.

Woelkerling WJ (1985). Proposal to Conserve Lithothamnion against Lithothamnium (Rhodophyta: Corallinaceae). Taxon 34:302-303.

Zambolim L, Ventura JA, Zanão Júnior LA (2012). Efeito da nutrição mineral no controle de doenças de plantas [Effect of mineral nutrition on the control of plant diseases]. Universidade Federal de Viçosa (1st ed), Viçosa, Brazil.

Published
2018-12-21
How to Cite
NEGREIROS, A. M., SALES JÚNIOR, R., MAIA JÚNIOR, F. F., SILVA, R. B., COSTA, J. A., & MEDEIROS, E. V. (2018). Lithothamnion calcareum Nanoparticles Increase Growth of Melon Plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 426-431. https://doi.org/10.15835/nbha47111377
Section
Research Articles