Potential Transference of CP4 EPSPS to Weed Species from Genetically Modified Gossypium hirsutum in Northern Mexico

Authors

  • Amada TORRES Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur. La Paz, Baja California Sur (MX)
  • Juan José REYES-PÉREZ 1) Universidad Técnica de Cotopaxi. Extensión La Mana 2) Universidad Técnica Estatal de Quevedo. Quevedo, Los Ríos (EC)
  • Cándido MÁRQUEZ-HERNÁNDEZ Universidad Juárez del Estado de Durango, Facultad de Ciencias Biológicas, Gómez Palacio, Durango (MX)
  • Josué ESTRADA-ARELLANO Universidad Juárez del Estado de Durango, Facultad de Ciencias Biológicas, Gómez Palacio, Durango (MX)
  • Juan Ramón ESPARZA-RIVERA Universidad Juárez del Estado de Durango, Facultad de Ciencias Químicas, Gómez Palacio, Durango (MX)
  • Pablo PRECIADO-RANGEL Instituto Tecnológico de Torreón. Torreón, Coahuila, Mexico (MX)
  • Bernardo MURILLO-AMADOR Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur. La Paz, Baja California Sur (MX) http://orcid.org/0000-0002-9489-4054

DOI:

https://doi.org/10.15835/nbha47111298

Keywords:

genetically modified plants; transgenic proteins; biodiversity; cross contamination; gene flow

Abstract

The family of enzymes 5-enolpiruvil shikimato-3-phosphate synthase (EPSPS) is found in plants and microorganisms. The substrates of this enzyme are phosphoenolpyruvate (PEP) and 3-phospho-shikimate and their products are phosphate and 5-enolpyruvylshikimate-3-phosphate that is the biological target of the herbicide glyphosate, which is used in genetically modified crops. The interaction between cultivated genetically modified plants (GMP) and wild plant species could be a transference source of transgenes. Presence of transgenes could be cause and adverse environmental impact on non-target organisms. Gossypium hirsutum genotype Bollgard II® is a GMP with tolerance to herbicide glyphosate and it has been cultivated during 20 years in Mexico and the possibility to gene flow primary in congeners of the Malvaceae family is possible. The objective of this study was to quantify and identify weed species associated to genetically modified cotton fields and to detect the present of glyphosate-insensitive EPSP synthases (CP4 EPSPS) in these species. The results showed that plants of the families Amaranthaceae, Asteraceae, Boraginaceae, Chenopodiaceae, Convolvulaceae, Fabaceae, Malvaceae, Poaceae, Portulacaceae, Solanaceae and Zygophyllaceae are present in the study site. Twenty-five weed species belonging to these botanical families were collected and identified in the site. From these, two species of the Malvaceae family with potential risk of gene flow plants, Anoda cristata and Sida hederacea were identified in the site; however, the CP4 EPSPS protein was not detected in none of the collected weed species and only the GM genotype Bollgard II® was positive to the CP4 EPSPS protein in the study site.

References

Bakhsh A, Emine A, Özcan SF, Hussain T, Aasim M, Khawar KM, Özcan S (2015). An insight into cotton genetic engineering (Gossypium hirsutum L.): current endeavors and prospects. Acta Physiologia Plantarum 37:171-179.

Booth D, Swanton J (2002). Assembly theory applied to weed communities. Weed Science 50(1):2-13.

Brubaker CL, Paterson AH, Wendel JF (1999). Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184-203.

Center Environmental Risk Assessment-CERA (2010). A review of the environmental safety of the CP4 EPSPS protein. Center Environmental Risk Assessment, ILSI Research Foundation. Washington D.C.

Chapman MA, Burke JM (2006). Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytologist 170(3):429-443.

Cunningham SA (2014). Honeybee visitors to cotton flowers and their role in crop pollination. A literature review. Commonwealth Scientific and Industrial Research Organisation (CSIRO). Agricultural Productivity Flagship. CLW 1501, for the Cotton Research & Development Corporation, Australia.

Dauber J, Hirsch M, Simmerring D, Waldhardt R, Otte A, Wolters V (2003). Landscape structure as an indicator of biodiversity: matrix effects on species richness. Agriculture Ecosystem and Environment 98:321-329.

Elpel T (2000). Botany in a day. 5th Edition. HOPS Press.

Emani C (2016). Transgenic cotton for agronomical useful traits. In: Fiber plants: Biology, biotechnology and applications. Ramawat KG, Ahuja Cham MR (Eds). Springer International Publishing pp 201-216.

Freire E (2002). Viabilidade de cruzamentos entre algodoeiros transgênicos e comerciais e silvestres do Brasil [Viability of crosses between transgenic and commercial and wild cotton in Brazil]. Revista Oleaginosas e Fibrosas 6:465-470.

Gómez JM (2002). Generalización en las interacciones entre plantas y polinizadores [Generalization in interactions between plants and pollinators]. Revista Chilena de Historia Natural 75:105-116.

Guzmán M, San Vicente F, Díaz D (2008). Flujo de polen entre híbrido tropicales de maíz de diferentes color de endospermo [Flow of pollen between tropical maize hybrids of different color of endosperm]. Bioagro 20:159-166.

Harrison LA, Bailey MR, Naylor MW, Ream JE, Hammond BG, Nida DL, … Padgette SR (1996). The expressed protein in glyphosate-tolerant soybean, 5-Enolypyruvylshikimate-3-Phosphate Synthase from Agrobacterium sp. strain CP4, is rapidly digested in vitro and is not toxic to acutely gavaged mice. Journal of Nutrition 126(3):728-740.

Hernández VB, Alvarado PJI Ávila CE, Payan OS, Morales MA, Loza VE (2010). Guía técnica para el área de influencia del Campo Experimental Valle de Mexicali. Sorgo Forrajero [Technical guide for the area of influence of the Mexicali Valley Experimental Field. Forage Sorghum]. Instituto Nacional de Investigaciones Agrícolas y Pecuarias. Centro de Investigación Regional del Noroeste. Campo Experimental Valle de Mexicali. Guía Técnica Número 1. 107-111.

Herrera-Andrade JL, Guzmán-Ruíz SC, Loza-Venegas E (2010). Guía para producir algodón en el Valle de Mexicali, B.C y San Luis Rio Colorado, Sonora [Guide to produce cotton in Mexicali Valley, B.C. and San Luis Rio Colorado, Sonora]. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias. Campo Experimental Valle de Mexicali. CIR-NOROESTE-SAGARPA.

Holst-Jensen A, Bertheau Y, de Loose M, Grohmann L, Hamels S, Hougs L, … Wulff D (2012). Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnology Advances 30:1318-1335.

Huang F, Leonard RB, Cook RD, Lee RD, Andow AD, Baldwin LJ, Tindall VK, Wu X (2007). Frequency of alleles conferring resistance to Bacillus thuringiensis maize in Louisiana populations of the southwestern corn borer. Entomologia Experimental et Applicata 122:53-58.

Janick J (1979). Horticultural Science (3rd ed.). San Francisco: WH Freeman.

Juturu VN, Mekala GK, Kirti PB (2015). Current status of tissue culture and genetic transformation research in cotton (Gossypium spp.). Plant Cell Tissue and Organ Culture 120:813-839.

Lot A, Chiang F (1986). Manual del herbario [Herbarium manual]. Consejo Nacional de la Flora de México. México.

Mallory-Smith C, Hall LM, Burgos NR (2015). Experimental methods to study gene flow. Weed Science 63(1):12-22.

Mallory-Smith C, Zapiola M (2008). Gene flow from glyphosate-resistant crops. Pest Management Science 64(4):428-440.

Manalil S, Coast O, Werth J, Chauhan BS (2017). Weed management in cotton (Gossypium hirsutum L.) through weed-crop competition: A review. Crop Protection 95:53-59.

Márquez-Hernández C, Puente-Valenzuela CO, Muro-Pérez G, García-Hernández JL, Rueda-Puente EO, Moreno-Hernández AN (2015). Detección de la proteína CP4 EPSPS en plantas arvenses en cultivos de algodón (Gossypium hirsutum) transgénico en la Comarca Lagunera, México [Detection of CP4 EPSPS protein in weed flora in transgenic cotton (Gossypium hirsutum) crops in Comarca Lagunera, México]. Agrociencia 49:739-747.

Martínez-Díaz G, Jiménez-León J (2009). Weeds in agricultural crops in La Costa de Hermosillo, Sonora, Mexico. In: Van Devender TR, Espinosa-García FJ, Harper-Lore BL, Hubbard T (Eds). Invasive plants on the move. Controlling them in North America. Proceedings of Weeds Across Borders Conference, Hermosillo, Sonora, May 25-28, 2006. Arizona-Sonora Desert Museum, Tucson, Arizona, USA pp 199-208.

Mehboob-ur-Rahman, Shaheen T, Tabbasam N, Iqbal MA, Ashraf M, Zafar Y, Paterson AH (2012). Cotton genetic resource. A review. Agronomy for Sustainable Development 32:419-432.

Perdomo F, Vibrans L, Romero M, Domínguez V, Medina J (2004). Análisis de SHE, una herramienta para estudiar la diversidad de malezas [Analysis of SHE, a tool to study the diversity of weeds]. Revista Fitotecnia Mexicana 27:57-61.

Quist D, Chapela HI (2001). Transgenic DNA introgressed into traditional maize landraces in Oaxaca, México. Nature 414:541-543.

Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livinstone K, Nakazato T, … Lexer C (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211-1216.

Risk Assessment Search Mechanism (2017). Risk Assessment Search Mechanism – RASM. Retrieved 2017 January 01 from http://rasm.icgeb.org/.

Ryffel GU (2014). Transgene flow: Facts, speculations and possible countermeasures. GM Crops and Food 5(4):249-258.

Sammons RD, Gaines TA (2914). Glyphosate resistance: state of knowledge. Pest Management Science 70(9):1367-1377.

Snir A, Nadel D, Groman-Yaroslavski I, Melamed Y, Sternberg M, Bar-Yosef O, Weiss E (2015). The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS One 10(7):e0131422.

Stewart C, Halfhill M, Warwick S (2003). Transgene introgression from genetically modified crops to their wild relatives. Nature Reviews Genetics 4:806-817.

Tamayo ELM (2010). Principales malezas en el Sur de Sonora y de la región de Caborca [Main weeds in the South of Sonora and Caborca region]. Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Valle del Yaqui. Ciudad Obregón, Sonora, México.

Vassant PG, Dinesh J (2016). Introduction of biotechnology in India’s agriculture: Impact, performance and economics. Springer Nature. Springer Science+Business Media Singapore Pte Ltd.

Villarreal-Quintanilla JA (1983). Malezas de Buenavista Coahuila [Weeds of Buenavista, Coahuila]. Universidad Autónoma Agraria Antonio Narro. Saltillo, Coahuila.

Villaseñor R, Espinosa G (1998). Catálogo de malezas de México [Catalogue of weeds of Mexico]. Universidad Nacional Autónoma de México. Fondo de Cultura Económica.

Warwick I, Legere A, Simard J, James T (2008). Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Molecular Ecology 17:1387-1395.

Warwick SI, Simard MJ, Légère A, Beckie HJ, Braun L, Zhu B, … Stewart JrCN (2003). Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theoretical and Applied Genetics 107:528-539.

Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van der Water PK (2004). Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proceedings of the National Academy of Sciences of the United States of America 101(40): 14533-14538.

Wegier A, Pineyro-Nelson A, Alarcon J, Galvez-Mariscal SA, Alvarez-Buylla ER, Pinero D (2011). Recent long-distance transgene flow into wild populations conforms to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of origin. Molecular Ecology 20:4182-4194.

Yan S, Zhu J, Zhu W, Li Z, Shelton AM, Luo J, Cui J, Zhang Q, Liu X (2015). Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators. Scientific Reports 5:15917.

Yue B, Huang F, Leonard BR, Moore S, Parker R, Andow AD, Cook D, Emfinger K, Lee RD (2008). Verifying an F1 screen for identification and quantification of rare Bacillus thuringiensis resistance alleles in field populations of the sugarcane borer Diatraea saccharalis. Entomologia Experimental et Applicata 129:172-180.

Downloads

Published

2018-12-21

How to Cite

TORRES, A., REYES-PÉREZ, J. J., MÁRQUEZ-HERNÁNDEZ, C., ESTRADA-ARELLANO, J., ESPARZA-RIVERA, J. R., PRECIADO-RANGEL, P., & MURILLO-AMADOR, B. (2018). Potential Transference of CP4 EPSPS to Weed Species from Genetically Modified Gossypium hirsutum in Northern Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(2), 294–299. https://doi.org/10.15835/nbha47111298

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha47111298

Most read articles by the same author(s)

<< < 1 2