

Available online at www.notulaebotanicae.ro

Print ISSN 0255-965X; Electronic ISSN 1842-4309 Not. Bot. Hort. Agrobot. Cluj 36 (2) 2008, 98-103

The Differences among Pear Genotypes to Fire Blight (*Erwinia amylovora*) Attack, Based on Observations of Natural Infection

Adriana SESTRAS¹⁾, Radu SESTRAS²⁾, Adrian BARBOS¹⁾, Madalina MILITARU³⁾

¹)Fruit Research Station, 3-5 Horticultorilor St., Cluj-Napoca 400454, Romania, e-mail: asestras@yahoo.com

²⁾University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur St., Cluj-Napoca 400372, Romania, e-mail: rsestras@yahoo.co.uk ³⁾Fruit Research Institute, Pitesti, Maracineni, 117450, Jud. Arges, Romania, e-mail: madamilitaru77@yahoo.com

Abstract

Fire blight, caused by the bacterium *Erwinia amylovora*, is one of the most damaging diseases of pear in the world. In Cluj-Napoca area, situated in central Transylvania, Romania, fire blight was observed first in 1994, very late comparative with the other countries from occidental Europe. The response of the pear cultivars and species from National Pear Collection from Cluj-Napoca to fire blight attack, assessed in natural conditions of infection, range on a large scale of variability, which denotes a strong influence of the genotype in expression of resistance or sensitivity to disease. From all genotypes, about 20.5% have not presented symptoms of attack, among them being the following: 'Blanquet precoce', 'Klementinka', 'Severianka', 'Beurré Bachelier', 'Kieffer Seedling', 'Er Shi Shinge', 'Beurré Amanlis', 'Bristol Cross', 'Beurré Liegel', 'Beurré Lucon', 'Grand Champion', 'Magness', 'Mericourt' etc. and several ancient autochthonous cultivars ('Pere malaiete', 'De zahar de Bihor', 'Cu miez rosu', 'Clopotele', 'Garoafa mare', 'Craiese', 'Para de apa'). Also, there were identified several species of *Pyrus* with no attack, as *P. pollveria*, *P. common pear*, *P. lindlezi*, *P. malifolia*, *P. persica*, *P. usuriensis*, *P. variolosa*. The remarked genotypes could be potential sources for further breeding programmes and increase the number of genotypes available for breeding new pear cultivars resistant to *Erwinia* attack.

Keywords: attack degree, breeding, Erwinia, genotypes, pear, species

Introduction

Fire blight, caused by the bacterium *Erwinia amylovora*, is one of the most damaging pear diseases in the world (Bell and Zwet, 1993). In Romania, fire blight was noticed for the first time in 1992, in two different locations in the south and south east of the country (Severin et al., 1999), very late comparative with the other countries from occidental Europe. In the north of the country, in Cluj-Napoca area, central Transylvania, fire blight was observed first in 1994, but the debut of disease was very suddenly and extreme, forcing to clear cut in the same year the trees form an orchard of 30 hectares near Cluj-Napoca. Since 1994, the fire blight attack in Transylvania was different, from one area to another, and with a large scale of damaged among cultivars, but not as really severe so much that to compromise orchards.

Regarding the disease seriousness, the pear breeding for resistance to fire blight is a priority in obtaining new cultivars (Gunen and Misirli, 2003; Sestras, 2004). For this reason it is necessary to identify resistant genotypes which can be used as genitors is artificial hybridisations (Zwet et al., 1974; Zwet and Bell, 1990; Bell, 1991; Bell et al., 1982, 2005; Sestras et al., 2007).

Resistance to fire blight in traditional cultivars of pear was found by Hevesi et al. (2004) from among Hungarian varieties; they found high resistance in Sikulai and Szemes alma cultivars, which were proposed for use as sources of fire blight resistance in breeding programmes and also grown in organic orchards. But the research for a fire blight resistant genotypes of pear has been undertaken in the United States since the beginning of the XX century and the resistant parents were firstly chosen in oriental species: *Pyrus pyrifolia, Pyrus ussuriensis* or in hybrids between *Pyrus communis* and these species (Thibault and Paulin, 1984). In France, the first crosses were made (Thibault, 1981) between a parent of good quality, but susceptible (General Leclerc, Notaire Lepin) and a parent with good resistance to fire blight (Maxine, Mac, Dawn etc.).

Materials and methods

The study was carried out at the Fruit Research Station from Cluj-Napoca, in Central Transylvania, Romania. In Romania, there are two germplasm collections (National Collections), at Fruit Research Station Cluj-Napoca and Fruit Research Institute Pitesti - Maracineni.

At FRS Cluj-Napoca, in the last ten years, the response to fire blight attack was assessed on more than 15000 genotypes of pear, from among more than 350 being cultivars and *Pyrus* species (grouped in National Collection of Pear from Romania), more than 140 clonal selections and remainder of them being seedlings. In National Collection, every genotype was represented by three trees grafted on 98

franc pear (seedling rootstock) and planted in 1992 on 4 m between rows and 3 m between trees on row. Clonal selections were placed in trials with different number of trees per variants, ages and distances of planting and rootstocks: quince, franc, Curé and Beurré Hardy as intermediate. The seedlings were represented by F_1 - F_n hybrids, by own roots, with different origin and pattern of hybridizations.

The response of genotypes to fire blight attack was assessed in natural conditions of infection, with the same currently treatments as in commercial orchards, uniformly applied to all the cultivars and selections, except seedlings fields where no treatments were effectuated.

In the last three years, in National Collection the fire blight attack was very intense and causing severe losses, so there were determined Frequency (F%) and Intensity (I%) attack and thus the Attack Degree (AD%), representing express the extension of the attack's seriousness. AD% was calculated by the formula: $AD\%=(F\% \times I\%)/100$ (Cociu and Oprea, 1989) as mean for the three trees analyzed per genotype in the last three years. In the field with selections and seedlings the estimation of fire blight level was made by notation of scale 1 (no attack) to 9 (complete scorching and tree death), corresponding with AD% classes.

Results and discussion

In National Collection of Pear, the fire blight had a very fast and severe evolution, the attack being very intense and causing severe losses, with evident differences depending of genotypes.

After Frequency and Intensity attack were determined for the last three years, there were calculated the Attack Degree - AD% (Table 1).

Considerable variation in resistance or sensibility to fire blight attack was observed with cultivars and species, ranging from highly susceptible to highly resistant.

Regarding to *Erwinia amylovora* attack, the analyzed genotypes were framed in nine classes (Table 2).

Table 1 The fire blight attack on differen	nt pear genotypes
(365 cultivars and species), appreciated	

Genotype	AD%
Ahrenberg	0
Beurré Amanlis	0
Beurré Bachelier	0
Beurré Durondeau	0
Beurré Liegel	0
Beurré Lucon	0
Beurré Superfin	0
Blanquet Precoce	0
Boieresti	0
Bristol Cross	0
Buttira di Roma	0
Carrick	0

Genotype	AD%
Cerovka	0
Chen-Chu-Mi	0
Cj 20-11-20	0
Clopotele	0
Collete	0
Conference	0
Conseilleur a la Cour	0
Craiese	0
Cu miez rosu	0
Curcubete	0
D'Alencon	0
De Zahar de Bihor	0
Decaisne Henrick	0
Deutleur Vaj Korte	0
Down	0
Erbina	0
Er-Shi-Shange	0
Ewerd	0
Garoafa Mare	0
General Osmanwill	0
Geneva 7620	0
Ginese	0
Grand Champion	0
HWJ 3-241	0
Kieffer Seedling	0
Klementinka	0
Laurence	0
	0
Magness Matyo	0
Maryo	0
Napoleon	0
Orel	0
Otecestvena	0
P 6-20-71	0
P 2-26-97	0
Panasat	0
Para de apa	0
Pere Malaiete	0
Pere Pergament	0
Phileson	0
Precoce de Celles	0
Precoce de Trevaux	0
Precoce Trottier	0
Pyronia Veitkii	0
Pyrus Carnot	0
Pyrus common pear	0
Pyrus lindlezi	0
Pyrus malifolia	0
Pyrus persica	0
Pyrus pollveria	0

Genotype	AD%	Genotype	AD%
Pyrus variolosa	0	Dorset	10.1
R. C. Wurtenberg	0	Pyrus longipes	10.7
Rakmanis Triumf	0	Bergamotte Crassane	10.8
Seigneur Essperen	0	Kostliche Von Germen	11.1
Severianka	0	Van Mons	11.1
Sierra	0	Moldoveanca	12.2
Firriote	0	Jeribasna	13.0
ГN 30-44	0	Mehmedkca	13.9
Tomnatice	0	Pyrus korshinski	14.2
Wileenska Plenna	0	Kiparijska	14.4
Williams	0	Thomson	15.2
Williams Bovey	0	Lucii galbene	15.7
Zaharoasa de Vara	0	Marculesti 41//32	16.3
Cantalupesti	0.3	Para de mai	18.0
Enie	0.3	Pultney	18.6
Pyrus communis	0.4	Gute Craue	20.5
Rousselet de Stuttgart	0.4	Marculesti 43//10	20.7
Marculesti 243	0.6	Orzatice	20.7
Zorca	0.7	H 3-1010	25.0
Bacsa Korte	1.1	Alexandre Lucas	33.3
Drymon	1.4	Aniversare	33.3
Beurré Bosc	1.6	Belle des Arbres	33.3
Margareta Krier	1.6	Beurré Diel	33.3
Auscat Strauss	1.6	Boieresti	33.3
Para de vin	1.6	Doyene G. Boucher	33.3
une Gold	2.2	Early Harvest	33.3
vliez de paine	2.6	Er-Jang -Li	33.3
Limonca	2.8	Falca rosie	33.3
Cure	3.1	IP -2542	33.3
Pyrus eleagrifolia	3.2	Jo-Kung-Li	33.3
mperiale	3.3	Kristalli	33.3
Laxton Superb	3.8	Le Lectier	33.3
Antig	4.0	Lincoln	33.3
Fravicescaia	4.2	Local mic de livezi	33.3
uliusi Selimesi	4.9	Lorentz Kovacs	33.3
De Chemontel	5.4	Loumenjuli Isletes	33.3
Large Winter	5.6	Mariana	33.3
Dulci de vara	5.7	Messir Jean	33.3
Beurré Bremen	6.1	Nina de Visani	33.3
Balansoie	6.5	NJ 13	33.3
Artass	8.3	Piparate de toamna	33.3
Gutuiesti	8.3	Pyrus Drovara	33.3
Madame Balet	8.3 8.3	5	33.3
Rock 4-116	8.3 8.3	Pyrus ussuriensis Rosior pietros	33.3
		Rosior pietros Sheldon	
Tamaioasa de Calinesti	8.3 8.7		33.3
Arabitka Endei vei Kome	8.7	Souvenir du Congres	33.3
Erdei voj Korte	8.8	Tang-Li	33.3
Favorita lui Clapp	8.8	Timpurie de Dimbovita	33.3
Takisa Varatice	9.1 9.1	Veitkii Dulci	33.3 33.4

99

Sestraș, A. et al. / Not. Bot. Hort. Agrobot. Cluj 36 (2) 2008, 98-104

_100		Canatzina	AD%
Genotype	AD%	Genotype Pringalle	62.5
Helmerhus Lyran	33.5	Esersca 2001	64.3
Rosii	34.0	Furnicoase	64.5
Epine du Mas	34.2	Untoasa de Transilvania	67.0
Geneva 4883	34.9	Dulci de seceris	68.0
Haydeea	35.4	Mindenre Jo Korte	68.3
Precoce de Trivale	35.9	Aarska	66.6
General Leclerc	36.6	Aliska Abbe Fetel	66.6
Maria Romana	37.4	Ananasova	66.6
Murphy Red Bartlett	37.4	Beurré Czei	66.6
Pierre Corneille	37.4	Bezsemianca	66.6
Old Homme	37.5	Bonne Louise d'Avranches	66.6
Cantari	38.3		66.6
Japoneze	38.3	Chang-Pa-Li Charlotte de Rocour	66.6
Triomphe de Tourraine	38.6		66.6
Republica	38.8	Cj 4-73-73 Csaszar Korte	66.6
Calebasse Plocka	39.4	Decana Comisiei	66.6
Napoca	39.7	Galbene	66.6
Beurré Naghewitz	40.0		66.6
Ducesa Pitmaston	40.0	Holtzfarbige	66.6
Busuioace	40.2	Max Red Bartlett Mici rosii	66.6
P 6-16-22	40.4		
Sorbopyrus	41.1	Okusanchiki Olivier de Serres	66.6 66.6
Untoasa de Tg. Mures	41.5		
President Heron	42.4	Pere cu doua recolte	66.6
Tamaiosa Robert	42.8	Pyrus betulaefolia	66.6
Postatele	43.3	Pyrus cordata	66.6
Devoe	43.5	Rosior de Dambovita	66.6
Argessis	43.8	Triumf	66.6
Triomphe de Vienne	46.6	Untoasa de Geoagiu Willia D	66.6
Muscat Allemand	48.6	Williams Rosu	66.6
Bergamotte Esperen	50.0	Zorca	66.6
Beurré Starckman's	50.0	Bunte Julibirne	66.9
Beurré Vauban	50.0	Veitkii	66.9
Blumenbacs Butterbirne	50.0	Vastavocinaia	68.8
Codita	50.0	Salamuer	69.5
Dr. Lucius	50.0	Beierschmidt	71.6
Ina Estival	50.0	Urechelnite	73.3
Kekicka	50.0	Fulvie Para de iarna	74.0
King Sobieski	50.0		74.0
Noiabriscaia	50.0	Babane	74.2
Rousselet de Reims	50.0	Pyrus eleagrifolia	74.2
Sparbirne	51.1	Williams cu miez rosu	74.2
P 6-16-96	52.8	Boiereasca Mare	75.0
Moonglow	54.2	P 6-19-36	75.0
Mora IP 112	54.6	Rising Summer	75.0
President Mass	54.9	Vidocka	75.0
Untoasa de Ardeal	56.0	Fermuti	75.5
Fondanta de Poiana	56.2	Lettnai Cure	76.6
Decana N. Krier	57.3	Aramiu de Somes	78.6
Fondanta de Padure	57.8	Ovid	79.0
Ciuda	62.0	Fragrante	79.7

_100

Genotype	AD%	Genotype	AD%
Pyrus canensis	80.9	Meton Belle	100.0
Karamanek	83.7	Michigan 437	100.0
HWY 3248	85.3	Morettini 64	100.0
Pepenii	88.5	Notair Lepin	100.0
Beurré Hardenpont	92.9	Nv 2480	100.0
Alamai	100.0	Ny 8760	100.0
Arabka	100.0	Orzatice	100.0
Aromata de Bistrita	100.0	P 6-20-71	100.0
Beurré Gelin	100.0	Para de paine	100.0
		Para de toamna	100.0
Boierasca Mica	100.0	Passe Colmar	100.0
Busuioace	100.0	Passe Crassane	100.0
Carpica	100.0	Pautalia	100.0
Cetatui	100.0	Pastravioare	100.0
Cj 72-17-11	100.0	Pastravioare de Valcea	100.0
Cj 99-7-51	100.0	Pere Piparate De Vara	100.0
Coadese	100.0	Piparate de vara	100.0
Crab	100.0	Pletoase	100.0
Cure	100.0	President Drouard	100.0
Daciana	100.0	President Drouard President Mas	
Decana del Friuli	100.0		100.0
Delbar exquise d'hiver	100.0	President Rooswelt	100.0
Doina	100.0	Productive de Iulie	100.0
Doyenne d'Juillet	100.0	Pyronia Luxemburgiana	100.0
Doyenne Gaubalt	100.0	Pyrus nivalis	100.0
Dr. Jules Goyot	100.0	Pyrus salicifolia	100.0
Ecimianka	100.0	Pyrus sikinensis	100.0
Euras	100.0	Pyrus sinaica	100.0
Eva	100.0	Pyrus syriaca Boiss	100.0
Fertility	100.0	Regale	100.0
Frumoasa de Brosteni	100.0	Remy Chatenay	100.0
Galbene de Bratca	100.0	Rock 4-181	100.0
Galbene de Vitomiresti	100.0	Rotilate	100.0
Gatlane	100.0	Santilesti	100.0
Ghindaoane	100.0	Sokrovisce	100.0
Globuloase mari	100.0	Solaner	100.0
Goloman de vara	100.0	Somesan	100.0
Graslin	100.0	Sommereierbirne	100.0
Grumkower Butterbirne	100.0	Spadona d'Estate	100.0
Harbuzesti	100.0	Tarda IP 1836	100.0
Haydeea	100.0	Tari	100.0
Haydeea	100.0	Tamaiosa Mica	100.0
Highland	100.0	Teri Vilmos	100.0
Ina Estival	100.0	Travicesc	100.0
	100.0	Trivale	100.0
leanne d'Arc		Untoasa de Sanchetru	100.0
Johantrop	100.0	Varatice	100.0
Kostliche	100.0	Vrabiute	100.0
Liche Gustav	100.0	Wilder	100.0
Lucii timpurii	100.0	Williams Precoce Morettini	100.0
Lucii Verzi	100.0	Zucher Bird	100.0
Maslovia	100.0	Zucher Ditu	100.0

Class	Attack appreciation	Attack Degree (AD%)	Number of	Percent of total	
		C	genotypes	genotypes	
1	No attack	0	75	20.5	
2	Very low attack	0.1-5.0	22	6.0	
3	Low attack	5.1-10.0	15	4.1	
4	Medium attack	10.1-20.0	15	4.1	
5	Supra medium attack	20.1-40.0	54	14.8	
6	Strong attack	40.1-60.0	31	8.5	
7	Very strong attack	60.1-80.0	52	14.3	
8	Extreme strong attack	80.1-99.9	5	1.4	
9	Complete scorching (trees dead)	100	96	26.3	

Table 2 The response of pear genotypes from National Collection of Cluj-Napoca to Erwinia amylovora attack

blight attack was very different, in extremely classes being 26.3% with "Complete scorching (trees death)". Between

The response of the 365 species and cultivars to fire included the most genotypes: 20.5% with "No attack" and

Table 3 Pyrus species and cultivars framed in extremely classes for response to Erwinia amylovora attack

Genotypes with no attack (AD%=0)		Genotypes total scorching (AD%=100)		
Species Pyronia Veirkii Pyrus Carnot Pyrus Carnot Pyrus common pear Pyrus lindlezi Pyrus persica Pyrus pollveria Pyrus pollveria Pyrus ussuriensis Pyrus variolosa Ancient Romanian cvs. Boieresti Clopotele Craiese Cu miez rosu Curcubete De zahar de Bihor Garoafa mare Panasat Para de apa Pere malaiete Pere pergament Tomnatice Zaharoasa de vara Another cvs. Ahrenberg Beurré Amanlis Beurré Bachelier Beurré Durondeau Beurré Liegel Beurré Lucon Beurré Superfin Blanquet Precoce Bristol Cross Buttira di Roma Carrick Cerovka	Chen Chu Mi Collete Conference Conseilleur a la Cour D'Alencon Decaisne Henrick Deutleur Vaj Korte Down Erbina Er-Shi-Shange Ewerd General Osmanwill Geneva 7620 Ginese Grand Champion Kieffer Seedling Klementinka Laurence Magness Matyo Mericourt Napoleon Orel Otecestvena Phileson Precoce de Celles Precoce de Celles Precoce de Trevaux Precoce de Trevaux Precoce de Trevaux Precoce de Trevaux Precoce Trottier R. C. Wurtenberg Rakmanis Triumf Seigneur Essperen Severianka Sierra Tirriote Wileenska Plenna Williams Williams Bovey	Species Pyrus salicifolia Pyrus sikinensis Pyrus sinaica Pyrus syriaca Boiss Ancient Romanian cvs. Alamai Boiereasca mica Busuioace Cetatui Coadese Frumoasa de Brosteni Galbene de Bratca Galbene de Vitomiresti Gatlane Ghindaoane Globuloase mari Goloman de vara Harbuzesti Lucii timpurii Lucii verzi Orzatice Para de paine Para de toamna Pastravioare Pastravioare Pastravioare de Valcea Pere piparate de vara Piparate de vara Piparate de vara Piparate de vara Piparate de vara Piparate de vara Piparate de vara Pitoase Rotilate Santilesti Tari Tamaiosa mica Untoasa de Sanchetru Varatice Vrabiute	Another cvs. Beurré Gelin Curé Decana del Friuli Delbar exquise d'hiver Doyenné d'Juillet Dr. Jules Guyot Ecimianka Eva Fertility Graslin Hentze Highland Jeanne d'Arc Johantrop Kostliche Liche Gustav Merton Belle Michigan 437 Morettini 64 Notair Lepin Passe Colmar Passe Colmar Passe Crassane Pautalia President Drouard President Mas President Mas President Rooswelt Productive d'Julliet Remy Chantenay Sokrovisce Solaner Sommereierbirne Spadona d'Estate Tarda IP 1836 Teri Vilmos Wilder Williams Prec. Morettini Zucher Bird	

102

the extreme classes the values of Attack Degree the percentages varied from 1.4% to 14.8%.

For the extreme classes to fire blight attack there were registered both *Pyrus* species and different cultivars, some of them ancient, autochthonous, cultivated on small areas on different regions of Romania, and some more or less spread in the world (Table 3).

There was noticed a certain inconstancy of the cultivars reaction to *Erwinia* attack, some known as resistant or tolerant being susceptible or contrary. 'Williams' ('Bartlett') considered highly susceptible was included in no attack class. At the same class was 'Williams Bovey', while 'Williams Precoce Morettini's' trees were completely killed. Several cultivars known as resistant were identified as susceptible at fire blight attack in Cluj-Napoca conditions; eg. 'Old Home' was registered with AD% = 37.5 and 'Moonglow' with AD% = 54.2. Some cultivars analyzed in different fields, including ones created at Cluj-Napoca ('Haydeea', 'Ina Estival'), there were registered with a very large scale of AD%, between 0-100%.

Surprising, unlike the cultivars from National Collection, the selections and seedlings from experimental fields, placed on the same perimeter of 10 hectares, were not affected only on a small rate, the attack being sporadic. Fire blight manifested only at 1-5% from the total genotypes in trials and hybrids fields, with low marks (2 or 3) reflecting very low attack or low attack.

The results obtained confirms the information from specialized literature according to the majority of the cultivars are susceptibile to *Erwinia amylovora* attack (Zwet and Beer, 1995; Zwet and Bell, 1990; Sestras, 2004) and the infection could spreads so rapidly through the tree that trees could not be saved.

Unfortunately, even though all the measures of control were tried (chemical control, sanitation, pruning, and eradication) they were not efficient and many genotypes from National Collection of Cluj-Napoca were lost. It is tried to remake the collection but probably some of the cultivars, especially the ancient autochthonous ones will be lost because at Fruit Research Institute Pitesti the fire blight compromised a part of the collection. In Romania, the saving of pear germplasm collections becomes a very acute problem.

Conclusions

The response of pear genotypes to fire blight attack emphasised a large variability within 365 pear genotypes tested in National Collection at the Fruit Research Station in Cluj-Napoca, Central Transylvania, Romania, which denotes a strong influence of genotype in expression of resistance or sensitivity to disease The variation limits for the attack degree on trees were estimated between 0% ("No attack") and 100.0% ("Complete scorching - trees death"). Out of all genotypes, 75 of them, representing 20.5% were registered with "No attack", while 96 of them, representing 26.3% were extremely sensitivity, the trees being killed by fire blight attack. Several species and cultivars registered with "No attack" and considered as tolerant to disease could be used as potential sources for further pear breeding programmes.

References

- Bell, R. L., T. van der Zwet, R. C. Blake, 1982, The pear breeding program of the United States Department of Agriculture. In: The Pear, T. van der Zwet and N. F. Childers (eds.), Horticultural Publications, Gainesville.
- Bell, R. L., 1991, Pears (*Pyrus*). In: Moore, J. N., J. R. Jr Ballington (Eds.) Genetic resources of temperate fruit and nut crops. Wageningen, The Netherlands, 657-697.
- Bell, R. L., T. Zwet, 1993, New fire blight resistant advanced selections from the USDA Pear Breeding Program. Acta Hort. 338, 415-420.
- Bell A., T. G. Ranney, T. A. Eaker, T. B. Sutton, 2005, Resistance to fire blight among flowering pears and quince. HortScience 40 (2), 413-415.
- Cociu, V., S. Oprea, 1989, Metode de cercetare in ameliorarea plantelor pomicole. Ed. Dacia, Cluj-Napoca.
- Gunen, Y., A. Misirli, 2003, Fire blight of pear and resistance breeding. Ziraat Fakultesi Dergisi 40 (3), 25-32.
- Hevesi, M., M. Göndör, K. Kása, K. Honty, M. G. Tóth, 2004, Traditional and commercial apple and pear cultivars as sources of resistance to fire blight. EPPO Bulletin 34(3), 377-380.
- Sestras, R., 2004, Ameliorarea speciilor horticole. Ed. AcademicPres, Cluj-Napoca.
- Sestras, R., A. Sestras, A. Barbos, 2007, The response of pear cultivars to *Erwinia amylovora* attack in Central Transylvania conditions, Romania. In: Book of Abstracts, 18th Eucarpia Genetic Resources Section Meeting, Plant Genetic Resources and their Exploitation in the Plant breeding for Food and Agriculture, Piestany, Slovacia, 23-26 May 2007, 138-139.
- Severin, V., F. Constantinescu, F. Jianu, 1999, Appearance, expansion and chemical control of fire blight (*Erwinia amylovora*) in Romania. Acta Hort. 489, 79-84.
- Thibault, B., 1981, Pear breeding for fire blight resistance program and first studies in France. Acta Hort. (117), 63-70.
- Thibault, B., J. P. Paulin, 1984, Pear breeding and selection for fire blight resistance. Acta Hort. 161 (141-146).
- Zwet, van der, T., W. A. Oitto, M. N. Westwood, 1974, Variability in degree of fire blight resistance within and between *Pyrus* species, interspecific hybrids, and seedling progenies, Euphytica. 23 (2), 295-304.
- Zwet, van der, T., R. L. Bell, 1990, Fire blight susceptibility in *Pyrus* germplasm from eastern Europe. HortScience 25 (5), 566-568.
- Zwet, van der, T., S. V. Beer, 1995, Fire blight Its nature, prevention, and control. USDA Agriculture Information Bulletin, No. 631.