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AbstractAbstractAbstractAbstract    
    
Medicinal plants are well known to have the advantages of high concentration of medicinal ingredients 

having clinical importance, curative value, small toxic and side effects. Important compounds viz., paclitaxel, 
camptothecin, and vincristine have been developed from medicinal plants as first-line of clinical drugs, leading 
to their consistently increasing demand globally. However, the destruction of natural environment due to 
excessive mining threatened such resources jeopardizing the successful growing of medicinal plants. A group of 
beneficial arbuscular mycorrhizal (AM) fungi is known to exist in the rhizosphere of medicinal plants, which 
can establish a reciprocal symbiosis with their roots, namely arbuscular mycorrhizas. These AM fungi are 
pivotal in the habitat adaptation of medicinal plants. Studies have demonstrated that AM fungi aided in growth 
promotion and nutrient absorption of medicinal plants, thereby, accelerating the accumulation of medicinal 
ingredients and aiding resistance against abiotic stresses such as drought, low temperature, and salinity. An AM-
like fungus Piriformospora indica is known to be cultured in vitro without roots, later showed analogous effects 
of AM fungi on medicinal plants. These fungi provide new mechanistic pathways towards the artificial 
cultivation of medicinal plants loaded with ingredients in huge demand in international market. This review 
provides an overview of the diversity of AM fungi inhabiting the rhizosphere of medicinal plants, and analyzes 
the functioning of AM fungi and P. indica, coupled with future lines of research. 
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IntroductionIntroductionIntroductionIntroduction    
 
Medicinal plants refer to all or part of plants that can be directly used as medicine or extraction of a drug 

(Zhao et al., 2019). In particular, authentic medicinal herbs originating from specific production areas have 
received widespread attention due to their high content of medicinal compounds, clinical significance, unique 
therapeutic impact, and minimal toxic side effects (Zhan et al., 2020). As a result, their demand is rising day-
by-day. For example, paclitaxel, camptothecin, and vincristine have been developed as first-line clinical drugs 
(Yang, 2018). The differentiating reasons between native and non-native medicinal plants include germplasm 
resources, growth environment and climatic conditions (Zhan et al., 2020). China is the leading country with 
the largest number of medicinal plants and blessed with longest history of growing medicinal plants in the 
world. However, due to destruction of natural environment, and long-term over-exploitation, the resources of 
many medicinal plants are facing an inevitable loss of resources (Zhao et al., 2019; Ullah et al., 2020). With 
rapid development of the global herbal market, Indian herbal medicine, Western herbal medicine, and Chinese 
herbal medicineare on the verge of extinction due to deterioration in natural habitat of medicinal plants (Ullah 
et al., 2020). It is important to improve the survival rate of medicinal plants and protect their native soil 
environment. 

Arbuscular mycorrhizal (AM) fungi in the soil form symbioses with most of the terrestrial plants, viz., 
arbuscular mycorrhizas (Khan et al., 2020; Meng et al., 2020). The extraradical hyphae of arbuscular 
mycorrhizas outside the root surface can extend into the areas, otherwise inaccessible to the roots to absorb 
water and nutrients and delivery them into the host to accelerate the acquisition of such important inputs by 
the host and enhancing the stress tolerance (Khan et al., 2020; Wu et al., 2020; Cheng et al., 2021; Zou et al., 
2021a, 2021b). Most of medicinal plants including Angelica dahurica, Atractylodes lancea, barberry, ginseng, 
peony, Pinellia pinellia, Polygonum cuspidatum, Panax notoginseng, Tulipa gesneriana and Yucca filamentosa 
form arbuscular mycorrhizas, which thus, affect the plant growth performance, active ingredient accumulation, 
and stress tolerance (Figure 1) (Ma et al., 2005; Gao et al., 2007; Ren et al., 2007; Cai et al., 2009; Cheng et al., 
2009; Tebuqin et al., 2015). Studies indicated that AM fungi affected secondary metabolic processes of plants, 
including flavonoids and terpenoids (Pongrac et al., 2008; Smith et al., 2010; Yadav et al., 2013; Zeng et al., 
2014). Most of terpenoids and alkaloids are the primary active ingredients of medicinal plants and display anti-
inflammatory, antibacterial, cardiotonic and anticancer effects (Zhang et al., 2015). AM fungal species Glomus 
mosseae promoted the synthesis and accumulation of flavonoids with host plant as Astragalus membrananceus, 
and also promoted the accumulation of berberine, fibrin, and jatrorrhizine in Phellodendron amurense (Fan et 
al., 2006). AM fungi up-regulated the expression of key biosynthesis genes in Artemisia annua and Stevia 
rebaudiana to promote the accumulation of artemisinin and stevioside (Mandal et al., 2015a, 2015b). However, 
artificially cultivated medicinal plants often reported to have a lesser abundance of AM fungi in the rhizosphere 
and account for a significant decrease in plant survival. Thus, high mycorrhizal dependence of medicinal plants 
determines the great potential of diversified roles of AM fungi in the cultivation of medicinal plants (Labidi et 
al., 2015). The present review briefly summarizes the diversity of AM fungi in the rhizosphere of medicinal 
plants, analyzes the effects of AM fungi and AM-like fungus (Piriformospora indica) on growth, nutrient 
uptake, stress tolerance, and medicinal components, in addition to some thoughts on the mycorrhizal 
interactions. 

An abundant resources of AM fungi are largely reported in the rhizosphere of medicinal plants, with a 
wide range of hosts (Table 1). AM fungal community and their diversity are of huge significance to understand 
the soil microbial environment and related underground ecosystems. The mycelial network formed by AM 
fungi aid in promoting the nutrient exchange and signal transfer between plants (Osborne et al., 2017). 

Here,    we used the Web of Science, CNKI and other databases to search the relevant papers by keywords 
such as mycorrhiza/mycorrhizal, medicinal plants, Piriformospora indica, endophytic fungi, medicinal 
components, stress, etc.    Subsequently, these literatures were further screened to remove the literatures not 
related to AM fungi and medicinal plants. Finally, 114 papers were chosen for subsequent analysis.  
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Figure 1. Figure 1. Figure 1. Figure 1. A diagram regarding the roles of AM fungi on medicinal plants 
A large number of AM fungal spores inhabit the rhizosphere of medicinal plants. These spores germinate under suitable 
environmental conditions and then colonize roots by signal substances released by the host, forming arbuscules in the 
root cortex cells as well as a large number of intraradical mycelium. Such AM symbionts strongly contribute to 
improved plant growth, increased nutrient acquisition, promoted medicinal components accumulation, enhanced 
stress resistance, etc. 

 
Table 1Table 1Table 1Table 1....    Diversity of AM fungi in medicinal plants 

Host plantsHost plantsHost plantsHost plants    AM fungi speciesAM fungi speciesAM fungi speciesAM fungi species    ReferencesReferencesReferencesReferences    
Aconitum carmichaeli Glomus caledonium, G. geospora, G. occulum, G. pallidum, and Gigaspora gigantean Li et al., 2011 

Aloe vera 
Acaulospora leavis, G. clavisporum, G. etunicatum, G. caledonium, G. luteum, and 

Scutellospora gregaria 
Koul et al., 2012 

Artemisia nilagrica  G. diaphanum, G. etunicatum, G. intraradices, G. spurcum, and Sc. gregaria Koul et al., 2012 
Atractylodes macrocephala G. constrictum, G. geospora, G. mossea, and G. pallidum Li et al., 2011 

Coleus aromaticus 
Acaulospora appendiculota, Ac. leavis, G. aggregatum, G. costricum, G. fascieulatum, G. 

mosseae, G. macrocarpum, Entrophosphora spp., and Scutellospora spp 
Mahobiya et al., 

2018 

Coptis chinensis 
G. caledonium, G. geospora, G. mosseae, G. diaphanum, G. occulum, and 

Acaulosporamella 
Li et al., 2011 

Curcuma decipiens 
Ambispora 1eptoticha, G. caledonium, G. constrictum, G. fascieulatum, G. geosporum, 

and G. multicaule 
Radhika et al., 

2010 

Hemidesmus indicus Am. 1eptoticha, G. fasciculatum, G. geosporum, G. maculosum, and G. multicaule 
Radhika et al., 

2010 
Lonicera japonica G. constrictum, G. geosporum, G. mosseae, and G. versiforme Gai et al., 2000 

Paris polyphylla  
var. yunnanensis 

Acaulospora appendicola, Ac. brieticulata, Ac. excavata, Ac. foveata, Ac. lacunosa, Ac. 
leavis, Ac. koskei, Ac. myriocarpa, Ac.polonica, Ac. rehmii, Ac. scrobiculata, G. albidum, G. 

ambisporum, G. deserticola, G. luteum, G. fragarioides, G.microaggregatum, G. 
multiforum, G. luteum, G. fragarioides, G. microaggregatum, G. multiforum, Gigaspora 
albida, Gi. margarita, Gi. ramisporophora, Scutellospora calospora, Sc.Gilmorei, and Sc. 

pellucida 

Zhou et al., 2009 

Plantago asiatica G. intraradices 
Zhang et al., 

2006 

Radix Scrophulariae 
G. constrictum, G. diaphanum, G. geospora, G. mosseae, G. occulum, G. reticulatum, and 

Gigaspora gigantean 
Li et al., 2011 

Rauwolfia serpentina 
Ac. appendiculota, Ac. leavis, G. aggregatum, G. costricum, G. fasciculatum, G. mosseae, 
G. macrocarpum, G. geosporum, Gigaspora spp., Scutellospora spp., and Sclerocystis spp. 

Mahobiya et al., 
2018 

Scutellaria baicalensis G. geosporum and G. versiforme 
Zhang et al., 

2006 
Solanum nigrum Gigaspora margaria Gai et al., 2000 

Solanum nigrum Glomus caledonium 
Zhang et al., 

2006 
Tagetes erecta G. fistulosum, G. luteum, G. etunicatum, and S. coralloidea Koul et al., 2012 
Withania somnifera G. clariodeum, G. etunicatum, G. fistulosum, and G. intraradices Koul et al., 2012 
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Rhizosphere diversity of AM fungiRhizosphere diversity of AM fungiRhizosphere diversity of AM fungiRhizosphere diversity of AM fungi    
    
Rich resources of AM fungi (Table 1) have been isolated and identified in medicinal plants, especially in 

China. Ma et al. (2005) studied the colonization status of AM fungi on 38 medicinal plants belonging to 21 
families in Chongqing (China) and reported that 30 species of these medicinal plants formed the structures of 
AM. As many 66 species of AM fungi have been reported in rhizosphere of 20 medicinal plants in Zhangzhou 
(China), with Glomus as the dominant genus (Jiang, 2012a). Zhao et al. (2010) isolated 23 species of AM fungi 
belonging to 3 family members from 10 medicinal plants in Anguo (China)with G.geosporum and G. mosseae 
as dominant species. Ten and twenty-six species of AM fungi were isolated, respectively, from rhizosphere of 
ginseng in Jilin (China) (Xing et al., 2000) and Begonia fimbriata (Su et al., 2018), featuring predominant 
genus of AMs such as Acaulospora, Glomus, Scutellospora, and Gigaspora in B. fimbriata. In the region of 
southern region of Fujian (China), 91 species of AM fungi belonging to five genera (Acaulospora, 
Archaeospora, Gigaspora, Glomus, and Scutellospora) were isolated from the rhizosphere of medicinal plants, 
with Glomus as predominant genus (Jiang, 2012b). 

In addition to China, the diversity of AM fungi within rhizosphere of medicinal plants has also been 
widely identified in India, Bangladesh, Poland, etc (Koul et al., 2012; Mahobiya et al., 2018; Radhika et al., 
2010). Radhika et al. (2010) studied the AM fungal diversity of 36 medicinal plants in Mount Ghat (India), 
showing 30 of them could form AM structures, and 42 species of AM fungi belonging to 5 genera were isolated 
and identified. Koul et al. (2012) from India found 42 species of AM fungi from the rhizosphere of medicinal 
plants. Of these, 6 species of AM fungi were identified in Aloe vera, 5 species of AM fungi in Artemisia annua, 
and marigold. Parmita et al. (2008) observed the occurrence of AM structures in 35 medicinal plants from the 
Rajsha University in Bangladesh from a total of 40 medicinal plants. Zubek et al. (2009) isolated 30 species of 
AM fungi in rhizosphere of 31 medicinal plants in Azieron University, Poland. Such vast and rich resources of 
AM fungi are the solid basis for their future application in medicinal plants.  

    
    
Physiological roles of AM fungi Physiological roles of AM fungi Physiological roles of AM fungi Physiological roles of AM fungi     
Promotion in growth and nutrient uptake 
The formation of AM symbionts (Figure 1) was observed to improve the nutrient uptake, resistance to 

biotic and abiotic stresses, and phytohormone balance, collectively responsible for elevated growth and 
development (Zhu et al., 2011; Abdel-Fattah et al., 2014; Fan et al., 2017). Jia et al. (2020) observed that AM 
fungi were able to colonize Salvia miltiorrhiza, which stimulated the accumulation of biomass. Huang et al. 
(2011) reported that AM species viz., G. mosseae and G. versiforme significantly increased the uptake of N, P, 
and K by Artemisia annua, besides increasing the chlorophyll content, transpiration rate, and shoot biomass of 
the plant. Our data also showed an improvement of plant growth in Reynoutria japonica at five weeks after 
inoculation with an AM fungus Funneliformis mosseae under sand-culture (Figure 2a) and soil-culture (Figure 
2b) conditions. 

 
Enhancement in abiotic stress tolerance 
Drought tolerance 
Drought is a major factor threatening the production of medicinal plants, and water deficit further 

impairs the physiological and biochemical functions of plants, resulting in reduced accumulation of active 
ingredients in medicinal plants (Liu et al., 2018). Studies demonstrated that inoculation with AM fungi up-
regulated the relative expression of PtFe-SOD, PtMn-SOD, PtPOD, and PtCAT1 genes in trifoliate orange 
plants under drought stress, indicating the distinctive role of mycorrhizal fungi in increase developing of 
antioxidant protected system under soil moisture stress condition (He et al., 2017; Wei et al., 2018; Zhang et 
al., 2019a; He et al., 2020). It has been shown that mycorrhizas altered the fatty acid composition and content 
of roots and its saturation to improve the plant ability to withstand against drought resistance, as a result of 
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AM-induced the expression of genes regulating fatty acid dehydrogenases in roots (Wu et al., 2019). 
Mycorrhizal fungi increase the photosynthetic and transpiration rates (Khalvati et al., 2005; Zhang et al., 2013; 
Bitterlich et al., 2018; Mathur et al., 2019; Langeroodi et al., 2020), optimize root architecture and root-hair 
length (Zhang et al., 2019b), improve rhizosphere microenvironment (Cheng et al., 2021a), and polyamine 
metabolism of plants in response to drought stress (Wu et al., 2013; Hashem et al., 2019; Cheng et al., 2021b; 
Zou et al., 2021). 

 

 
Figure 2. Figure 2. Figure 2. Figure 2. Plant growth responses of Polygonum cuspidatum Sieb. et Zucc under sand-culture (a) and soil-
culture (b) conditions after inoculation with an AM fungus Funneliformis mosseae for five weeks 
(unpublished data) 
 
Liu et al. (2015) observed that the AM fungi colonization improved the plant growth and increased the 

nutrient uptake in Lonicera japonica, and the effect was more significant under drought stress than under 
ample water. Mycorrhizal fungi significantly promoted the content of N, P, and K, in addition to water uptake 
in Eriobotrya japonica under drought stress (Zhang et al., 2012). The results of Zhao et al. (2007) showed that 
AM fungal inoculation significantly increased chlorophyll proline contents, superoxide dismutase activity, 
reduced malondialdehyde content and cell membrane permeability, but improved the seedling survival under 
drought condition, due to improved drought resistance of Forsythia suspensa. Kumar et al. (2016) reported 
that AM fungal inoculation resulted in higher leaf relative water content and water-use-efficiency of 
Abelmoschus esculentus under drought stress. Xie et al. (2017) reported that glycyrrhizic acid and glycyrrhizin 
content of roots increased significantly following the AM fungal inoculation in Glycyrrhiza uralensia under 
soil water deficit stress conditions. These studies suggested the multiple benefits of AM fungi on medicinal 
plants under drought stress conditions. 

 
Other abiotic stress 
The role of AM fungi in medicinal plants is also reported against other abiotic stresses, such as low 

temperature stress and salt stress. Xu et al. (2014) inoculated G. mosseae into Carthamus tinctorius under 
NaCl stress and observed an increase in shoot biomass and chlorophyll content, along with the enhancement 
in osmotic regulation and nutrient absorption through reduction in membrane lipid peroxidation and Na+ 
concentration. Karasawa et al. (2012) observed that AM fungi increased the Zn, Cu, and P contents in Plantago 
plantain under low temperature stress. In Trigonella foenumgraceum, inoculation with G. intraradices 
increased the plant Fe3+ and Mn2+ levels under NaCl stress conditions, and thus mycorrhizated plants expressed 
the better ionic balance in plants, resulting in enhanced stress tolerance (Evelin et al., 2011). Under salt stress, 
Prasad et al. (2011) also reported an increase in K+ and decrease in Na+ and Cl- following inoculation with G. 
intraradices. These results demonstrated the ability of AM fungi to enhance the resistance of medicinal plants 
against various abiotic stresses. Therefore, AM fungi are an important environmentally friendly attribute for 
medicinal plants under adversity. However, most of these works are related to the physiological responses of 
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plants, and more work has to be carried out with regard to molecular responses to understand the relationship 
between AMs and medicinal plants. 

 
Increased synthesis of active ingredients 
An increasing number of studies showed that AM fungi influenced plant secondary metabolism and the 

accumulation of metabolic products, thus, significantly increasing the active ingredients in a variety of 
medicinal plants (Zeng et al., 2013; Kapoor et al., 2016; Welling et al., 2016). The effect of AM and AM-like 
fungal inoculation on change in medicinal components of medicinal plants (Table 2). Wei et al. (1991, 1989) 
inoculated G. epiqaeum and G. mosseae in three plants (Datura stramonium, Perilla frutescens, and 
Schizonepeta tenuifolia), which showed a substantial increase of essential oils in S. tenuifolia and hyoscyamine 
concentration in D. stramonium under soil P-deficit conditions. Other studies also showed a significant 
increase in tanshinone content of Salvia miltiorrhiza upon AM fungal inoculation (Yang et al., 2012) and in 
berberine, yaconine, and tetrandrine contents of Phellodendron amurense (Fan et al., 2006). In basil, AM 
fungal inoculation resulted in an increase in monosaccharide enol and phenylpropanoid content, however 
aromatic alcohols decreased, thus changing the essential oil composition of leaves (Prasad et al., 2011). The 
content of active ingredients of volatile oils was significantly increased in Atractylodes lancea seedlings 
following inoculation withAM species such as G. etunicatum, G. mosseae, and G. tortuosum (Liang et al., 
2018). Inoculation with G. mosseae showed a significant increase in terpene content of Atractylodes 
macrocephala (Lu et al., 2011) and flavonoids in Astragalus propinquus (He et al., 2009) and Poncirus trifoliata 
(Chen et al., 2017), in addition to increased uptake of nutrients (P, K, Mg, Cu, Zn, and Mn) in P. trifoliata 
(Chen et al., 2017). Therefore, AM fungi promoted the synthesis of terpenoids in plants, due to increase 
inpyrophosphates (isopentene pyrophosphate and dimethylallyl pyrophosphate) (Wang et al., 2020). Similarly, 
AM fungi stimulated the signaling molecules such as hydrogen peroxide, nitric oxide and salicylicacid in 
medicinal plants, regulating rate-limiting enzyme activities related to flavonoids, (phenylalanine ammonia lyase 
and cinnamic acid-4-hydroxylase), inhibit further the formation of caffeic acid (Wang et al., 2020). 

 
Table 2Table 2Table 2Table 2.... Effects of AM fungi and AM-like fungi (Piriformospora indica) on medicinal ingredients of 
medicinal plants 

Medicinal plants AM fungi used Effects on medicinal ingredients References 

Aloe vera Piriformospora indica Aloe gel↑ Sharma et al., 2014 

Angelica dahurica Glomus claroideum and G. intraradices Growth↑ Zhao et al., 2011 

Aristolochia elegans Mart. P. indica Aristolochic acids↑ Bagde et al., 2014 

Artemisia annua Glomus mosseae Artemisia carvifolia↑ Huang et al., 2011 

A. nilagrica P. indica Artemisinin↑ Sharma et al., 2013 

A. membranaceus G. mosseae Flavonoid↑ He et al., 2009 

Atractylodes macrocephala G. mosseae Terpenes↑ Lu et al., 2011 

Centella asiatica  P. indica Asiaticoside↑ 
Satheesan et al., 

2012 

Chrysanthemum 

morifolium 
G. aggregatum Chlorogenic acid↑; caffeoylquinic acid↑ Pan et al., 2013 

 G. intratadices 
No significant effect on chlorogenic 

acid and caffeoylquinic acid 
 

 G. mosseae Luteoloside↓  

Dendrobium officinale P. indica Polysaccharide↑ Xu et al., 2021 

Geranium spp. G. intrradices Essential oil↑ Prasad et al., 2012 

Glycyrrhiza uralensia  Rhizophagus irregularis Glycyrrhizic acid↑ Xie et al., 2017 

Inula ensifolia R. clarum Thymol↑ Zubek et al., 2010 

 R. intraradices Thymol↓  

Ocimum basilicum Gigaspora rosea and Gi. margarita α-Terpineol and eugenol↑ 
Copetta et al., 

2006 

Paris polyphylla var. 

yunnanensis 
Mixed AM fungi Polyphyllin↑ Li et al., 2021 

Phellodendron amurense G. diaphanum and G. mosseae Jatrorrhizine↑ Fan et al., 2006 

 G. etunicatum and G. versiforme Palmatine↑  

 G. diaphanum and G. mosseae Berberine↑  

↑ and ↓ mean significant increase and decrease of the variable after inoculation with AM fungi, respectively. 
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AM-accelerated accumulation of active components in medicinal plants is related to the increase of gene 
expression levels of synthetic-related enzymes of medicinal components (Xie et al., 2020). Li et al analyzed the 
change of polyphyllin in Paris polyphylla var. yunnanensis in the field after inoculated with mixed AM fungi 
and found the increased of polyphyllin I, II, and VII, along with the up-regulated expression of squalene 
epoxidase gene (PpSE) (Li et al., 2021). AM fungal inoculation could simultaneously up-regulate the expression 
of 1-deoxy-D-xylulose 5-phosphate (DXS) and 1-deoxy-D-xylulose 5-phosphate reductase (DXR) genes in 
leaves of Artemisia annua and Stevia rebaudiana, thus promoting the accumulation of artemisinin 
(sesquiterpene) and stevioside (diterpene) (Mandal et al., 2015a, 2015b)., Nevertheless, 3-hydroxy-3-
methylglutaryl-CoA reductase (HMGR) gene expression was not induced by AM fungi in Artemisia annua 
and Glycyrrhiza uralensis (Mandal et al., 2015b; Xie et al., 2018). 

 
Interaction of AMInteraction of AMInteraction of AMInteraction of AM----like fungus (like fungus (like fungus (like fungus (P.P.P.P.    indicaindicaindicaindica) with medicinal plants) with medicinal plants) with medicinal plants) with medicinal plants    
P. indica was reported by Verma et al. (1998) in the Thar Desert of northwest India. The fungus is an 

endophytic fungus, similar to AM fungus, but the difference is that it can be cultured through an artificial 
medium (Yang et al., 2021). Due to its in vitro culturable properties and AM-like functions, P. indica has been 
extensively studied in medicinal plants (Lou et al., 2007).  

 
Growth promotion 
P. indica can colonize coupled with increased plant growth of a wide range of plants, including medicinal 

plants such as Aloe vera and Centella asiatica (Deshmukh et al., 2006). The root and stem biomass, apart from 
as well as chlorophyll concentration of A. vera was significantly increased upon inoculation with P. indica 
(Sharma et al., 2014). P. indica also promoted the growth of other medicinal plant such as Adhatoda vasicanees, 
Coleus forskohlii, Spilanthes calva, and Withania somnifera (Varma et al., 1999; Das et al., 2012). Xu et al. 
(2021) inoculated Dendrobium officinale with P. indica through seed isolation culture and original bulb 
growth stages, which showed an early onset of germination and enhanced all plant growth promoting attributes 
including root growth properties length of D. officinale original bulbs. In addition, P. indica also increased the 
growth of C. asiatica (Satheesan et al., 2012; Bagde et al., 2014). The culture filtrate of P. indica has been 
reported to play a significant role in promoting the growth of Artemisia annua (Sharma et al., 2013). These 
results suggested that P. indica is highly responsive through a wide range of hosts, with strong stimulatory 
benefits in medicinal plants. 

 
Changes of secondary metabolites  
The secondary metabolites are considered the source of plant defense. The symbiosis between P. indica 

and medicinal plants is reported to stimulate the accumulation of secondary metabolites in host plants, such as 
ursolic acid, oleanolic acid, and stevioside (Kilam et al., 2015, 2017; Vassilev et al., 2017). P. indica inoculation 
significantly increased the gel and total phenol content in Aloe vera (Sharma et al., 2014) and polysaccharides 
in D. officinale (Xu et al., 2021). Studies in C. asiatica by Satheesan et al. (2012) showed significant elevation 
in asiaticoside content upon inoculation with P. indica. Interestingly the culture filtrate of P. indica increased 
aristolochic acid content (Zhao et al., 2011) as well as artemisinin content of A. annua (Sharma et al., 2013). 
In addition, P. indica affected the synthesis and accumulation of hormones in medicinal plants, including 
cytokinins (Schӓfer et al., 2009), abscisic acid, gibberellins and brassinosterols (Shahabivand et al., 2017). These 
results amply suggested that inoculation with P. indica accelerated the synthesis of various secondary 
metabolites in medicinal plants (Table 2), but the underlying mechanisms involved are still a lot to be 
investigated. 

 
Enhancement of resistance in response to heavy metal stress 
The AM fungi, P. indica isolated from the rhizosphere of medicinal plants in the desert region (Varm et 

al., 1999), suggesting that the fungus is capable of averting various environmental stresses to plants. 
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Shahabivand et al. (2017) observed that under Cd stress, P. indica increased leaf photosynthetic rate of 
sunflower, and enhanced the photosynthetic capacity of the plant, thus, affecting the important plant 
physiological processes such as plant development, nutrient balance, and antioxidant accumulation (Abadi et 
al., 2016; Swetha et al., 2017) While, under Cr stress, P. indica increased leaf, stem, and root dry weight of 
tobacco, besides accelerating the ascorbic acid and glutathione contents along with increased superoxide 
dismutase and catalase activities (Cheng, 2019). 

In addition, P. indica enhanced drought tolerance of Chinese cabbage by reducing malondialdehyde 
contents, improving antioxidant enzyme activities, promoting the expression of drought-related genes, and 
regulating photosynthesis and thylakoid CAS protein (Sun et al., 2010). In addition, inoculation with P. indica 
increased antioxidant enzyme activities, reduced proline contents, and up-regulated drought-related gene 
expression levels (Xu et al., 2017). Water absorption and photosynthetic pigments were distinctly increased by 
P. indica in wheat exposed to salt stress (Zarea et al., 2012). These studies are focused on field crops, and the 
role of P. indica in medicinal plants under stress conditions has not been explored. 

 
    
ConclusionsConclusionsConclusionsConclusions    
 
The worldwide demand for medicinal plants is on gradual upsurge. There is consistent interest in 

improving the growth of medicinal plants, promoting the accumulation of active ingredients, and enhancing 
the resistance of medicinal plants exposed to a variety of stress. The rhizosphere of medicinal plants inhabits a 
strong AM fungi-diversity that could be exploited for promoting growth, increased medicinal ingredients, and 
enhanced stress tolerance (Figure 1). Varied responses in medicinal plants results also indicated a strong need 
to provide high priority research to AM fungi in medicinal plants. There is still a need to focus on the following 
points regarding the interaction of AM fungi and medicinal plants: 

(1) Many medicinal plants have specialized habitat requirements dictating the extent of their 
distribution, which determines the territorial nature of mycorrhizal fungi. Therefore, exploring the diversity of 
AM fungal populations with reference to medicinal plants would be highly imperative. 

(2) There is a need to strengthen the screening of AM fungi strains, especially for the comparison of 
indigenous and exogenous AM fungi, in order to obtain the efficient AM fungal strain catering to physiological 
roles of medicinal plants. In addition, for many endangered medicinal plants, there is a critical need to enhance 
the investigation of AM fungi diversity in order to preserve these plants and promote their survival. 

(3) An important function of AM fungi is to facilitate the synthesis of secondary metabolites as a source 
of disease tolerance. However, the underlying mechanisms of AM fungi action are still quite enigmatic to 
present day researchers. Whether, the mycorrhizal fungus acts through its own synthesis (acquired systemic 
resistance) or by stimulating the accumulation of active ingredients (induced systemic resistance) in medicinal 
plants need to be addressed urgently. Li et al. (2021) demonstrated that AM fungi promoted the expression of 
PpSE in P. polyphylla var. yunnanensis, thus, accelerating the accumulation of polyphyllin, suggesting that AM 
fungi participate in such biochemical processes at the molecular level. Therefore, more attention should be paid 
to decode such physiological biochemical functions at the molecular level. 

(4) Many of the studies in medicinal plants have been conducted under potted conditions, with very few 
field studies. As a result, more field work, especially with P. indica should be carried out in the future to generate 
field evidence to realize the magnified response of AM fungi. These efforts would put the growing of medicinal 
plants on a scientific footing. 
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