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Abstract 

The demand for ornamental plants is increasing due to urban greening and rural construction, while the 
growing environment of plants, especially the soil environment, is deteriorating. Hence, sustainable methods 
of ornamental plant cultivation need to be developed quickly. The application of arbuscular mycorrhizal fungi 
(AMF) to ornamental plants can be one of the eco-friendly ways to achieve the objective. Soil AMF establish 
mycorrhizal symbiosis with roots of ornamental plants, which can develop a marvelous mycorrhizal mycelium 
network in the rhizosphere to stimulate nutrient and water acquisition of host plants. Numerous researches 
have proven that AMF improved the quality of ornamental plants, like fruit yield, height, biomass, seed quality, 
the size and number of flowers, leaf, and root. In addition, mycorrhizal fungi also improve nutrient uptake and 
endogenous hormone balance of host plants. Another important function of AMF is to regulate the 
physiological, biochemical, and molecular responses of host plants to adversity, including drought stress, 
temperature stress, heavy-metal stress, and insect and disease stress. From the perspective of the ecological 
garden landscape, AMF richness would maintain plant abundance, nutrient and energy balance, and higher 
productivity in normal and soil environment stress, thus, establishing a friendly-environmental ecosystem. This 
review also provides the basis to exploit and improve the commercial application of AMF in ornamental plants 
in the future.  
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Introduction 

As far as 19 centuries, arbuscular mycorrhizal fungi (AMF) were found to be symbiotic with roots of 
terrestrial plants in nature for establishing arbuscular mycorrhiza (AM) (Zhang et al., 2020). AM symbiosis can 
enhance the photosynthetic efficiency of the host to improve shoot and root biomass, roots number and size, 
flowering, and other morphological indexes (Xie et al., 2018; Li et al., 2020). AMF are important for increasing 
the uptake of water and nutrients for plant growth and development by a mycorrhizal hyphal network that can 
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be expanded the absorptive area by 40 times and explore deeper water and nutrients (Giovannetti et al., 2001; 
Hayashi et al., 2018; Zhang et al., 2019a). Similarly, AMF regulate endogenous hormone levels to affect plant 
growth and flowering (Bi et al., 2019). So far, earlier studies have indicated that AMF play one of the most 
important regulators in plant development in adversity stress. In drought stress, AMF regulate osmotic 
substances, increase antioxidant enzyme activities, and promote water absorption to enhance drought 
resistance (Khalvait and Ruth, 2005; Wu et al., 2013; Li et al., 2019). In addition, the presence of AMF alters 
plant-type, activates the antioxidant defense system, and regulates temperature-related gene expression to 
alleviate damage by extreme weather (Chen et al., 2013; Zou et al., 2020).  

In ornamental plants, according to the variety of mycorrhizal fungi and the characteristics of symbiosis 
with plants, there are AM, ectotrophic mycorrhiza, orchid mycorrhiza, arbutiod mycorrhiza, ericoid 
mycorrhiza, and monotropoid mycorrhiza. Hereinto, most of woody and herbaceous plants form AM type. 
Wood ornamental plants that belong to AM plants include Michelia alba DC., Idesia polycarpa (Figure 1a), 
Davidia involucrata Baill., Acacia farnesiana (Linn.) Willd., Chimonanthus praecox (Linn.) Link, Osmanthus 
sp., etc.; Shrub oranmental plants include Cercis chinensis Bunge, Nerium indicum Mill., Camellia japonica 
L., Hibiscus rosa-sinensis Linn., and so on; and herbaceous ornamental plants include Cymbidium ensifolium 
Sw.., Rosa chinenses Jacq., Trifolium repens (Figure 1b), Dendranthema morifolium Ram, etc. (Wang et al., 
2008). Ornamental plants have different dependence on AMF: Trifolium repens, Rosa chinenses Jacq., and 
Dendranthema morifolium Ram are the high-dependent on AMF; Matthiola incana (L.) R. Br. and Petunia 
hybrida Vilm. are the moderate dependent type; Nicotiana tabacum L. and Solanum lycopersicum L. are the 
low dependent type (Urcelay et al., 2003). It is documented that AMF are widely distributed in various habitats, 
e.g., meadows, forests, tropical regions, and frigid regions (Yang et al., 2011). These AMF are varied, dependent 
on environments, and give different effects on ornamental plants (Brundrett, 2004). For example, A part of 
ornamental plants are also growing in arid and semi-arid areas for soil remediation, where they usually grow 
poor soil with a small amount of AMF species (Zhang et al., 2018b). The present review outlined the effects of 
AMF on ornamental quality, nutrient absorption, endogenous hormone levels, and stress resistance of 
ornamental plants. And the review conferred the function of AMF on the landscape ecosystem of ornamental 
plants. 

 
Colonization of AMF in roots of ornamental plants 
As mentioned earlier, many ornamental plants have the root mycorrhizal fungal colonization (Figure 

1a, 1b), and the degree of mycorrhizal colonization in ornamental plants is varied, dependent on AMF species 
and plant species. In Solan district, Himachal Pradesh, India, 15 ornamental flower plants showed the different 
AMF colonization rate, among the highest colonization rate of Senecio cineraria was 100%, and the lowest in 
Jacobinea carnea was 14.28% (Kumar et al., 2012). Possibly, some secondary metabolites contents of host 
plants, such as flavonoid, can affect spore’s germination, and mycelium elongation and branching (Fall et al., 
2015). The percentage of AMF colonization in roots is increased with the increase of plant-age. For example, 
Cryptomeria japonica plants had higher colonization rate in first-order roots of older plants than in younger 
plants, which is related to P content and C/N ratio, thus, conferring more nutrient acquisition (Hishi et al., 
2016). Even in the same plant, the percent of AMF infection shows a dynamic change due to the change of 
season and soil environment (Kumar et al., 2012). AMF colonization in black locust seedlings was decreased, 
due to the decline of carbon supplication (Yang et al., 2014a). The illumination intensity affected the AMF 
colonization rate in Syzygium seedlings, whilst the higher photosynthesis results in more carbohydrates into 
the fungal partner for fungal growth (Gamage et al., 2004). Therefore, the inoculating time, ornamental plant 
types, and soil environment are critical factors to ensure the success to faster and better form mycorrhizal 
symbiosis between AMF and ornamental plants.  
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Figure 1. Colonization of arbuscular mycorrhizal fungi in roots of ornamental plants. a: Idesia polycarpa; 
b: Trifolium repens 
 
AMF effects on ornamental quality of ornamental plants  
There are many paths to improve flowering, growth, and field of ornamental plants, such as temperature, 

light, and plant growth regulator. However, these paths would be too costly in terms of capital and energy 
consumption, and long-term use of plant growth regulators harms the soil environment. AMF can be a friendly 
environmental approach to promote the quality of ornamental plants. Studies indicated that AMF significantly 
affected flowering, such as the size, the number of flowers, and the phenological stage of flowering (Shamshiri 
et al., 2012). Comparing with non-AMF plants, AMF-inoculated plants had relatively higher flower number 
in ornamental plants, such as marigold, geranium, and harlequin (Engel et al., 2016; Varga and Kytöviita, 2010; 
Scagel, 2004), and also increased size and color in carnation and hyacinth (Navarro et al., 2012; Xie and Wu, 
2015; Xie et al., 2018). Similarly, the flowering time of Medicago truncatula was earlier by inoculation with 
AMF (Liu et al., 2018). The total flowering stage was significantly prolonged in tomato after mycorrhization 
(Banla et al., 2015), but was shortened in Chrysanthemum morifolium by AMF colonization (Sohn et al., 
2003). Garmendia and Manga (2012) reported that inoculation with Glomus mosseae in Rosa hybrida was not 
significantly affected on early flowering and the number of flowers. The species of AMF have different effects 
on the flower of host plants and depend on how AMF regulate the nutrient element content in host plants and 
a certain amount of carbohydrates accumulated in plants (Liu et al., 2018). Similarly, AMF also can directly or 
indirectly affect the balance of endogenous hormones in plants, thus affecting the growth and flowering of 
mycorhizal plants. Endogenous hormones, such as indoleacetic acid (IAA), gibberellin (GA), and cytokinin 
(CTK), are growth-promoting hormones, and are affected by AMF (Perner et al., 2007). And Song et al. (2012) 
has also proved that inoculation with G. intraradices and G. mosseae can significantly enhance the level of IAA, 
GA and zeatin (ZR) in Amorpha fruticosa. During seed germination, leaf growth, stem elongation, pollen tube 
elongation, flower and fruit development, and flower transformation, endogenous hormone levels are regulated 
by AMF for better plant growth responses (Swain and Singh, 2005; Razem et al., 2006). In addition, the hyphae 
of AMF can produce CTK and GA to effect growth and flowering of ornamental plants (Barea and 
Azconaguilar, 1982).  

AMF do not just change morphological of flower, but also affect inclusion of flower.  polyphenol, as an 
important component of flowering ornament plants, has been affected by AMF in Calendula officinalis, 
Melissa officinalis, and Origanum majorana (Engel et al., 2016). Not only that, AMF also can influence the 
quality of ornamental plant progeny by indirectly affecting ornamental plant pollination, AMF alter the seed 
quality of some Rosaceae by indirectly affecting plant pollination (Barber and Gorden, 2006). AMF increased 
nectar yield and the male or hermaphrodite flower number and size, to attract pollinators more easily to ensure 
the formation and quality of progeny seed (Asikainen and Mutikainen, 2005; Kiers et al., 2010; Varga and 
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Kytöviita, 2010). At the same time, AMF cause transgenerational effects on the offspring of plants through 
increasing the proportion of methylated DNA in seed (Varga and Soulsbury, 2017).  

Inoculation with G. intraradices or Gigaspora albida significantly increased collar diameter and root 
length in Eucalyptus hybrid (Sastry et al., 2000). In the urban garden, inoculation with AMF had positive 
effects on total shoot length, trunk diameter, shoot and root biomass, and shoot to root ratio in Acacia smallii 
and Fraxinus uhdei (Stabler et al., 2001). In addition, root structure was greatly improved by AMF to delay the 
senescence of Cryptomeria japonica (Hishi et al., 2016). Similarly, the most significant effect of AMF on 
ornamental grasses is to increase the biomass of shoot and root and the root activity for promoting density and 
coverage of lawn (Watts-Williams et al., 2019). However, there was no effect on plant height in mycorrhizal 
tall fescue, while plant height of both eastern gamagrass and big bluestem was positively increased in 
mycorrhizal plants (Thorne et al., 2013), suggesting that the AMF effect is dependent on host and AMF 
species. Therefore, when AMF are applied to any ornamental plant, efficient screening of mycorrhizal fungi is 
required.  

 
Improvement of mineral nutrition in mycorrhizal ornamental plants 
Ornamental plants need adequate industrial chemical fertilizer, which would pollute the soil 

environment. AMF, a natural biological fertilizer, could not result in environmental pollution. Studies have 
proven that AMF significantly improved the absorption of nutrient elements, like N, P, and K in mycorrhizal 
Chrysanthemum morifolium, Petunia hybrida, Tegetes erecta, Callistephus chinensis, Papaver rhoeas, and 
Dianthus caryophyllus, as well Fe, Mn, Cu, and Zn (Table 1) (Sohn et al., 2003; Gaur and Adholeya, 2005). 
The nutritional improvement under mycorrhizal is closely related to hyphae of AMF that increases the 
absorption of nutrient elements. The mycorrhizal hyphae expand the area of absorption of nutrient element, 
but also increase the ability to absorb nutrient elements (Mathur et al., 2018). The content of N, P, and K was 
significantly increased in Hyacinthus orientalis L. by inoculation with Funneliformis mosseae, but not 
Diversispora spurca and D. versiformis (Xie and Wu, 2015). In pelargonium, inoculation with AMF 
significantly increased P and K content, not N concentration (Perner et al., 2007). Huang et al. (2020) reported 
that in walnut (Juglans regia), inoculation with AMF (Acaulospora scrobiculata, D. spurca, G. etunicatum, G. 
mosseae and G. versiforme), to some extent, increased root nutrient contents, dependent on AMF species and 
mineral types. The above results fully indicate that AMF inoculation has a positive effect on nutrient uptake of 
ornamental plants, which depends on mineral elements, host plants, and AMF species. 

It was proved that extraradical mycelium of AMF contribute P requirements for up to 80% plants 
(Marschner and Dell, 1994) because the network of hyphae expands the volume of P absorption, but also 
secretes phosphatases to catalyze organic compounds into phosphate (Hayashi et al., 2018). The gene of P 
transporters is up-regulated by AMF to associate P uptake in many plants (Fellbaum et al., 2014). The 
expression of MtPT4 was induced by AMF in the root of Medocago truncatula. AMF promote organic and 
inorganic N absorption and transportation for host plants by extratradical mycelium, and NH4

+ is the major 
form to be absorbed (Leigh et al., 2009). Wang et al. (2020) proved that about 42% of total N was obtained via 
mycorrhizal rice roots under NO3

- supply condition, and putative nitrate transporter gene OsNPF4.5 had been 
strongly induced in rice roots. Especially, the increase of N nutrient was more obviously in leguminous by AMF, 
contributed to the nodule number and N metabolism-related enzyme activity (Xie et al., 2020). A higher 
K+/Na+ ratio in mycorrhizal Zelkova serrata seedling subjected to salt stress protected protein synthesis and 
cellular enzymatic processes (Wang et al., 2019a). Paying attention to other nutrients in ornamental plants 
should be involved. 
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Table 1. Effects of inoculation with AMF on the quality performance of ornamental plants 
Ornamental plant 

species 
AMF species Mycorrhizal effects on ornamental plants Reference 

Kinnow 
Glomus manihotis, G. mosseae, 

and Gigaspora gigantia 

Improving growth parameters like plant height, canopy 
volume, mean leaf area, and number of new shoots per plant, 

and altering flowering phenology 

Shamshiri et al., 
2012 

Calendula officinalis, 
Melissa officinalis, and 

Origanum majorana 

Claroideoglomus etunicatum, 
C. claroideum and 

Rhizophagus intraradices 
Increasing biomass and polyphenol content Engel et al., 2016 

Geranium sylvaticum Glomus claroideum and G. hoi 
Improvement of floral diameter, functional stamens, and 

pollen grains 
Varga and 

Kytöviita, 2010 

Sparaxis tricolor Glomus intraradices 
AMF-inoculated plants blossom 7-9 days earlier and 
produced more flowers, croms and biomass per plant 

Scagel, 2004 

D. caryophyllus Glomus intraradices Improvemeng in growth, quality and mineral concentrations 
Navarro et al., 

2012 

Hyacinth 
Diversispora spurca, D. 

versiformis, and Funneliformis 
mosseae 

Only Funneliformis mosseae increased morphology, color, 
and lasting time of flowers, which is related with enhanced 

IAA levels and N, P and K concentrations 
Xie and Wu, 2015 

Trifolium repens 
Funneliformis mosseae, 

Paraglomus occultum, and 
Rhizophagus intraradices 

Dual inoculation of Rhizobium trifolii and P. occultum or R. 
intraradices further magnified the positive effect. Leaf and 

root N content, root total soluble protein content, root 
nitrogenase activity, and amino acid 

Xie et al., 2018 

Rosa hybrida 
Glomus intraradices and G. 

mosseae 

No change in plant biomass, leaf nutritional status and flower 
quality of rose after inoculation with AMF, due to low 

symbiosis establishment 

Garmendia and 
Manga, 2012 

Pelargonium peltatum 
L’Her. 

Three different commercially 
available inocula 

Mycorrhizal colonization increased the number of buds and 
flowers, as well as shoot P and potassium (K) concentrations, 
but did not significantly affect shoot dry matter or shoot N 

concentration 

Perner et al., 2007 

Amorpha fruticosa 
Glomus intraradices and G. 

mosseae 

the seedlings’ growth indexes, dynamic characteristics of 
plant endogenous hormone levels, soluble sugar contents in 

roots and in leaves respectively, and nitrogen (N), 
phosphorous (P) were significantly increased by AMF 

Song et al., 2012 

Calendula officinalis, 
Melissa officinalis, 

Origanum majorana 

Claroideoglomus etunicatum, 
C. claroideum, and 

Rhizophagus intraradices 

AMF inoculation significantly increased the biomass of 
marjoram, the number of marigold’s flowers and the yield of 
rosmarinic acid and lithospermic acid isomers of marjoram 

and lemon balm. 

Engel et al., 2016 

Medicago truncatula 

Acaulospora scrobiculata, 
Gigaspora margarita, 

Funneliformis geosporum, 
Rhizophagus intraradices, F. 

mosseae, and Glomus 
tortuosum, 

Inoculation with Funneliformis geosporum, Glomus 
tortuosum, or Acaulospora scrobiculata had two periods of 

rapid flower production 
Liu et al., 2018 

Geranium sylvaticum 
Claroideoglomus claroideum 

and Glomus hoi 
Higher DNA methylation 

Varga and 
Soulsbury, 2017 

Eucalyptus hybrid 
Acaulospora scrobiculata, 

Gigaspora albida, and Glomus 
intraradices 

Glomus intraradices or Gigaspora albida significantly 
increased collar diameter, root length and shoot length. 

Sastry et al., 2000 

Acacia smalii, Fraxinus 
uhdei, and Parkinsonia 

microph 

Acaulospor morrowiae, 
Glomus ebumeum, G. 

facisculatum, G. 
miaoaggmgatum, and G. 

mosseae 

Increase in total shoot length, trunk caliper, total dry weight, 
shoot dry weight, root dry weight, shoot to root ratio, and 
phosphorus concentration in Acacia smallii and Fraxinus 

uhdei 

Stabler et al., 2001 

Cryptomeria japonica 
Various mycorrhizal fungi in 

foreste 
Improvement in root structure, especially fine roots, and 

delaying of plant senescence 
Hishi et al., 2016 

Medicago truncatula Funneliformis mosseae 
Increase in biomass, shoot nutrient concentrations, and root 

activity and inducation of MtAQP1 MtPIP1, MtPIP2, 
MtNIP1, and MtNIP4 expression under drought stress 

Watts-Williams et 
al., 2019 

Tall fescue, Big 
bluestem, and Eastern 

gamagrass 

Sources of AMF from Claridon 
and Wilds 

Tall fescue was not affected by AMF, while plant growth of 
big bluestem and eastern gamagrass was enhanced 

Thorne et al., 
2013 
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Enhancement of stress resistance in ornamental plants by AMF  
Drought stress 
Researches have confirmed that AMF significantly enhanced drought resistance in ornamental plants 

(Wu et al., 2013, 2019; Zhang et al., 2020). AMF usually improved the root structure of ornamental plants, 
such as root number, length, surface area, and diameter (Wu et al., 2013). The great root system obtains more 
water in wider and deeper soil, but also allow more abundant extraradical hyphae of AMF, which are much 
thinner than fine roots, to expand beyond depletion zone and penetrate smaller pores to absorb water and 
nutrient (Allen, 2011; Smith and Smith, 2011; Zhang et al., 2018a; Zou et al., 2020). Meanwhile, Khalvait and 
Ruth (2005) indicated that 4% of water was transported to the roots of host plants by hyphae. And the hyphae 
increase the total water absorption rate by 20% (Ruth et al., 2011). Therefore, mycorrhizal ornamental plants 
improve drought tolerance, which attributes to the increase of hydraulic conductivity (Robert et al., 2008). 
Mycorrhizal ornamental plants can maintain higher water-use efficiency and relative water content than non-
AMF plants (Yang et al., 2014b), providing favorable condition for accumulation of carbohydrates and gas 
exchange (Zhu et al., 2012). Under soil water deficit, mycorrhizal plants remarkably increase the accumulation 
of carbon compounds to respond to oxidative burst (Barros et al., 2018). In addition, AMF induce antioxidant 
defense systems to mitigate the accumulation of reactive oxygen species in mycorrhizal plants (Zou et al., 2020). 
Li et al. (2019) showed that AMF reduced malondialdehyde content, increased catalase and superoxide 
dismutase activity in Leymus chinensis under water stress. Furthermore, AMF can AMF regulate the expression 
of drought-related genes in plants (Cheng et al., 2020a). Two functional aquaporin genes from G. intraradices, 
GintAQPF1 and GintAQPF2, were expressed strongly in cortical cells with rich intraradical mycelia and 
extraradical mycelia of roots under drought stress (Li et al., 2013). However, host AQPs were down-regulated 
or unchanged by AMF inoculation under drought stress (Zou et al., 2019). Hence, Cheng et al. (2020a) 
proposed the synergistic effect of host and fungal AQPs on water status of hosts. AMF are involved in the 
induced expression of P5CS genes encoding a rate-limiting enzyme in proline synthesis (Porcel et al., 2004) 
and NCED genes encoding a key enzyme in ABA synthesis during drought stress and recovery (Aroca et al., 
2008). Hence, mycorrhizal ornamental plants have a greater capacity to tolerate drought stress by a series of 
physiological and molecular mechanisms. 

 
Temperature stress 
In recent years, extreme weather is happening with increasing frequency by global climate change. 

Ornamental plants are always subjected to low- or high-temperature stress. AMF help plant responses to stress 
by altering plant physiological activities (Duhamel et al., 2013), Thus, inoculation with AMF maybe be an 
efficient strategy to cope with low and high temperature through promoting nutrient absorption, changing cell 
membrane structure, activating the antioxidant system, and regulating temperature-related gene expression 
(Tu et al., 2019). Bunn et al. (2009) had proven that AMF showed better heat tolerance than roots, with the 
increasing temperature. Under high-temperature soil, Dichanthelium lanuginosm plants inoculated with AMF 
significantly increased plant biomass, root length and diameter, and proportion of flowers and promoted early 
flowering (Bunn et al., 2009). Five AMF species collectively promoted shoot and root biomass, and reduced 
indices of leaf and root browning in strawberry under high-temperature stress, and G. mosseae and G. 
aggregatum had most effective (Matsubara et al., 2004). Additionally, mycorrhizal plants hold higher 
photosynthetic capacity and avoid the damage to the photosynthetic apparatus under high temperature 
(Mathur et al., 2020). Under low temperature stress, Ornithopus compressus and Lolium rigidum inoculated 
with AMF significantly increased plant growth than non-AMF plants (Carvalho et al., 2015). That could be 
AMF inoculation stimulated cyclic electron flow process in chloroplasts to reduce damage of stress, but also 
affected electrons transmission and phosphoric acid production in mitochondria, thus, promoting carbon 
metabolism under temperature stress (Mathur et al., 2020). Simultaneously, AMF induced the cold-tolerant 
gene expression of the host, and twenty-four DEGs identified were associated with the metabolism of 
photosynthesis and respiratory (Li et al., 2020). AMF increased secondary metabolites content and antioxidant 
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enzyme activities, and induced expression of stress-related genes under low temperature (Chen et al., 2013). 
Therefore, mycorrhizal fungi are an important protocol for ornamental plants to resist temperature stress, 
which should be paid more attention. 

 
Heavy-metal stress 
In cities, a large amount of ornamental plants is planted in soil polluted by heavy metals, which severely 

limits plant growth and survival. Fortunately, AMF have been considered as a cost-effective and 
environmentally friendly protocol in phytoremediation and ecological restoration (Yang et al., 2015b). 
Elsholtzia splendens applied to a Cu-contaminated soil that significantly delayed the first-flowering dates and 
full-bloom stage and shorted flowering duration without AMF, whereas AMF recovered it and even promoted 
the flowering period (Jin et al., 2015). Generally, mycorrhizal hyphae and spores of AMF combine with heavy 
metal ions to reduce their mobility in the soil (Janoušková and Pavlíková, 2010). The hyphae also decrease the 
distribution of heavy metal from root to leaf, protect leaf tissues from injury (Yang et al., 2015a; Kushwaha et 
al., 2016). Similarly, Zhou et al. (2017) adopted a spectrum to analyze Cu content at the cross section of root 
tip of Tagetes patula, and confirmed that intraradical hyphae could selectively sequestrate a great deal of free 
Cu through sorption and barrier mechanisms. In general, soil nutrients are always low under excessive heavy 
metals condition, while mycorrhizal ornamental plants usually maintain higher nutrient levels. For example, 
mycorrhizal Medicago sativa had higher biomass and N, P, K and Ca contents than non-mycorrhizal plants 
under Cd stress (Zhang et al., 2019b). AMF also secrete a special glycoprotein, glomalin, to contribute soil 
nutrient pools and form protein-metal compounds for reducing the level of heavy metal in soil (Chern et al., 
2007; Gonzalez-Chavez et al., 2009; He et al., 2020; Meng et al., 2020). Inoculation with Funneliformis 
mosseae enhanced the levels of ATP binging cassette (ABC) and metallothioneins (MET), transcripts in tall 
fescue roots under Ni stress (Shabani et al., 2016). Thereinto, GintABC1 isolated from extraradial mycelium 
of G. intraradices, participated in reducing toxicity of Cu and Cd (González-Guerrero et al., 2010). 
Furthermore, RintZnT1, a Zn transporter, participated in isolation of Zn in vacuolar (González-Guerrero et 
al., 2005). Therefore, an important research hotspot of mycorrhizas in ornamental plants is the mechanism of 
heavy metal pollution soil adaptive to mycorrhizal fungi in ornamental plants. 

 
Diseases and insect  
AMF affect the population of pathogenic microbes and harmful rhizospheric pests (Cheng et al., 

2020b). Slezack et al. (1999) discovered that inoculation with Glomus mosseae significantly reduced the red 
rot of pea roots by Aphanomyces euteiches. The date palm (Phoenix dactylifera L.) against inoculated with 
AMF reduced the index of pathogen occurrence by 8-77% (Jaiti et al., 2007). The mechanisms of AMF on 
enhancing the tolerance of diseases and insects is due to the competition between AMF and pathogens and 
insect for rhizospheric microbes, colonization sites, and nutrient substances (Al-Aska et al., 2010). Perhaps 
AMF compensate the damage of diseases and insect through improvement of plant health, root structure, and 
nutrient acquisition (Majewska et al., 2017). However, there was no significant difference between G. 
intraradices-colonized plants and non-AMF-colonized plants infected with white rot (Prados-Ligeo., 2002). 
AMF also inhibited the damage of nematode in menthol mint (Ratti et al., 2000), and reduced the damage of 
Pratylenchus coffea (Elsen et al., 2003). Additionally, many genes (ChtA3, gluB, CEVI16, OSM-8e and PR-1) 
have been predicted to participate in defense responses to enhance the disease resistance of mycorrhizal plants 
via transcript profiles (Liu et al., 2007; Ismail and Hijri, 2012).  

As a whole, when ornamental plants grow in poor soil, inoculation with AMF not only increases the 
adaptability of ornamental plants to adversity but also improves the soil environment, which will be beneficial 
to the further application of ornamental plants in urban greening.  
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AMF and ecological garden landscape 
Ornamental plants are frequently used in the ecological garden that is distributed in urban green space, 

rural area, and a damaged environment land. A higher richness of community productivity is found in the 
ecological system with various ornamental plants than in a conventional system (Lacombe et al., 2009). It is 
well-known that the interaction between plant and microbial communities affects the balance of biodiversity 
and ecosystem function (Klironomos et al., 2011). AMF are the vital component of the underground biome 
and widely distributed in various eco-systems with kinds of plants (Lee et al., 2013). In addition, AMF directly 
affect the performance of host plants and indirectly affect plant communities via the increase of nutrient 
absorption and availability of soil nutrients by underground mycorrhizal networks (Werner et al., 2015). In 
contrast, the diversity and richness of host plants also affect AMF communities, which could give priority to 
providing carbon to beneficial symbionts (Vogelsang et al., 2006). AMF have effect on a variety of ecosystem 
functions by various pathways. Perhaps AMF are ubiquitous in terrestrial ecosystems and have a greater effect 
in the ecosystem than other soil microbes, like phosphate-solubilizing bacteria and nitrifiers (Powell et al., 
2018). Additionally, AMF have positive effects on soil microorganism population and soil physical and 
chemical properties, which benefit the ecological restoration (Yang et al., 2016b). Hereinto, AMF reduce water 
loss of soil and soil hydrophobicity by AMF-released glomalin, resulting in low soil erosion in mycorrhizal soils 
(Rillig, 2004; Rillig et al., 2010).  

Urban ecological landscapes are usually built on developed construction sites, including urban garden, 
residential landscape, and road afforesting, with a very small number of microbial species. Ornamental plants 
could be colonized by AMF in urban environments, but the propagule abundance or infectivity is relatively 
lower than the natural environment (Wisemanand Wells, 2005). Plenty of ornamental plants are applied to 
the urban ecological garden landscape by tree transplanting, while the plant survival rate is dramatically low 
under such poor ecological conditions. Dag et al. (2009) indicated that AMF promoted olive transplanting 
with higher height, shoot and root biomass, and leaf and root nutrient levels without fertilization to increase 
tolerance of transplant shock. The AMF species richness and communities are dependent on ornamental plant 
species (Wang et al., 2019b). Therefore, the combination with ornamental plants and appropriate AMF 
community built wonderful garden ecosystems that have less interspecific competition, better water and 
nutrient levels, and greater tolerance of abiotic and biotic stress (Teste et al., 2017).  

Ornamental plants often apply to build beautiful rural, which need to be in line with the local natural 
conditions. Unlike urban environment, the rural environment has higher species diversity, organisms’ number, 
and total biomass (Bainard et al., 2011). Therefore, exotic ornamental plants are difficult to blend into the local 
rural ecology without causing a threat by changing native plant species, community composition, and ecological 
functions (Aerts et al., 2017). The richness and composition of AMF indirectly influence plant survival and 
establish in an unfamiliar environment (Yang et al., 2014a; Lin et al., 2015). When exotic ornamental plants 
are introduced into a new environment, the native AMF from rhizosphere of the exotic plants must be 
introduced to increase the plant survival rate and growth (Egidi et al., 2018; Policelli et al., 2019). Hence, it is 
necessary to know AMF diversity in the native and new habitat. In some cases, exotic plants and AMF can 
overcome the lack of AMF group, and the native AMF are crucial for the transplanting of ancient trees 
(Sulzbacher et al., 2018). However, indigenous AMF may cause ecological risks in the new environment, which 
needs to be noted (Davison et al., 2015).  

Possibly, ornamental plants in ecological landscapes cannot be used to remediate the terrible soil 
environment, such as the soil with heavy metal, pesticide residue, and organic pollutant, but they beautify the 
polluted environment. AMF as an effective protocol can be considered to apply soil remediation (Joner et al., 
2001). Yang et al. (2016a) showed that AMF strengthened nutrient complementarities between plants through 
an underground mycorrhizal hyphal network. Similarly, under hydrocarbon-contaminants soil, AMF 
colonization promoted the absorption of polycyclic aromatic hydrocarbon, and AMF also degraded organic 
pollutants in the soil (Singer et al., 2003; Rajtor and Piotrowskaseget, 2016). AMF species and number in the 
ecosystem having multiple plants are relatively higher than those in the ecosystem with a single plant, and thus 
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an ecosystem of diverse plant species with abundant AMF diversity has more glomalin released from AMF to 
chelate heavy metals in the soil (Bedini et al., 2010).  

 
 
Conclusions 
 
At present, the beneficial effects of AMF are confirmed in ornamental plants with better plant growth 

performance, more nutrient acquisition, and higher resistance to stress (Figure 2). AMF play a vital role in the 
establishment and maintenance of the ecological landscape in various soil environments. In the future, more 
applied studies should be carried out as soon as possible to make AMF commercially available. However, there 
are still many problems to be solved before the AMF can be used:  
i) There is no qualitative breakthrough in AMF propagation in vitro. Large-area application of AMF on 
ornamental plants requires a lot of mycorrhizal inoculums. Therefore, the development of economic, reliable, 
and efficient protocol for AMF propagation still needs to be paid attention; 
ii)  AMF promote flowering and improve the ornamental quality of ornamental plants, while the underlying 
mechanism at the molecular level is still unclear and needs to be researched.  
iii)  When exogenous AMF are applied to the rhizosphere of ornamental plants, the biological risk must be 
concerned, so as not to destroy the community of indigenous AMF. 
iv)  The effect of AMF on ornamental plants depends on their compatibility. Therefore, an effective evaluation 
system of AMF for ornamental plants should be established to screen effective AMF to early apply it in the 
nursery.  
 

 
Figure 2. A schematic diagram regarding the effects of arbuscular mycorrhizal fungi (AMF) on ornamental 
plants and their rhizosphere for establishing and maintaining landscape ecosystem. AMF colonize the root 
system of an ornamental plant, establish a developed extraradical mycelium network, and further colonize 
the neighboring plants. Therefore, the developed mycelium network establishes the plants in an ecosystem 
as an organic whole. These mycorrhizal networks and extracellular mycelium help ornamental plants that 
grow better and have better nutrients and resistance of abiotic and biotic stress. Therefore, AMF can be 
used as an environmentally friendly medium to construct garden landscape.  
(    Insect;    Disease;         Extraradical hyphae;  Spore;     Heavy metal pollution)   
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