Cover Image

Temporary Immersion System for Micropropagation of Tree Species: a Bibliographic and Systematic Review

Lara Siqueira Oliveira CARVALHO, Elif A. OZUDOGRU, Maurizio LAMBARDI, Luciano V. PAIVA

Abstract


This paper was characterized by a bibliometric and systematic review on the database ISI Web of Science, aiming to provide an update of the main points addressed regarding the Temporary Immersion Systems (TIS) for micropropagation of tree species. It was pointed out that the frequency and time of immersion were one of the main parameters studied in the papers and 35% these papers worked with eucalyptus species. The main problem reported in the papers was the hyperhydricity, but it was overcome via procedures such as: a) air injection into the system, b) increasing the immersion intervals and decreasing the immersion time and c) decreasing concentration of cytokinin. Most papers reported that TIS produced plants that were more successful in surviving the ex-vitro acclimation stage than those produced on semi-solid media or continuous immersion systems. Few studies compared different types of temporary immersion bioreactors on micropropagation of plants and within the established criteria, papers with TIS tree species represented only 15% of the total. This system has presented promising results for most of the tree species, and although some gaps have been identified and few are the works with tree species, this process has been taking an increasingly larger space in the propagation of plants.

 

*********

In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 1, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI number will become active after the article will be included in the complete issue.


Keywords


eucalyptus; hyperhydricity; immersion frequency; micropropagation

Full Text:

PDF

References


Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Çiftçi YO (2014). Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell, Tissue and Organ Culture 117:65-76.

Albarrán J, Bertrand B, Lartaud M, Etienne H (2005). Cycle characteristics in a temporary immersion bioreactor affect regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell, Tissue and. Organ Culture 81:27-36.

Alvard D, Côte F, Teisson C (1993). Comparison of methods of liquid medium culture for banana micropropagation. Effects of temporary immersion of explants. Plant Cell, Tissue and Organ Culture 32:55-60.

Bertola A (2014). “Eucalipto: Verdades e Mentiras” [“Eucalyptus: Truths and Lies”]. Retrieved 2017 October 23 from http://www.painelflorestal.com.br/base/www/painelflorestal.com.br/media/attachments/43/43/541b3e9e487dc6724141e01f535f443560e2a9ddb5ef2_eucalipto-verdades-e-mitos.pdf.

Botelho LLR, Cunha CCA, Macedo M (2011). O método da revisão integrativa nos estudos organizacionais [The integrative review method in organizational studies]. Gestão e Sociedade 5(11):121-136.

Businge E, Trifonova A, Schneider C, Rödel P, Egertsdotter U (2017). Evaluation of a new temporary immersion bioreactor system for micropropagation of cultivars of eucalyptus, birch and fir. Forests 8(196):1-9.

Castro D, González J (2002). Eucalyptus (Eucalyptus grandis Hill. ex Maiden.) en el sistema de inmersión temporal [Eucalyptus (Eucalyptus grandis Hill, ex Maiden.) in the temporary immersion system] Agricultura Técnica 62(1):68-78.

Chakrabarty D, Hahn EJ, Yoon YJ, Paek KY (2003). Micropropagation of apple rootstock M.9 EMLA using bioreactor. Horticultural, Science and Biotechnology 78(5):605-609.

Chakrabarty D, Dewir YH, Hahn EJ, Datta SK, Paek KY (2007). The dynamics of nutrient utilization and growth of apple root stock ‘M9 EMLA’ in temporary versus continuous immersion bioreactors. Plant Growth Regulation 51:11-19.

Chen C (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology 57(3):359-377.

De Klerk GJ, Ter Brugge J (2011). Micropropagation of dahlia in static liquid medium using slow-release tools of medium ingredients. Scientia Horticulturae 127:542-547.

Dutra LF, Wendling I, Brondani GE (2009). A micropropagação de eucalipto [The micropropagation of eucalyptus]. Pesquisa Florestal Brasileira 58:49-59.

Etienne H, Berthouly M (2002). Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture 69:215-231.

Georgiev V, Schumann A, Pavlov A, Bley T (2014). Temporary immersion systems in plant biotechnology. Engineering in Life Sciences 14:607-621.

González R, Rios D, Avillés F, Sánchez-Olate M (2011). Multiplicación in vitro de Eucalyptus globulus mediante sistema de inmersión temporal [In vitro multiplication of Eucalyptus globulus by a temporary immersion system]. Bosque 32(2):147-154.

Grattapaglia D, Machado MA (1998) Micropropagação. In: Torres AC, Caldas LC, Buso JA (Eds). Cultura de Tecidos e Transformação Genética de Plantas. EMBRAPA-CBAB, Brasília pp 183-260.

Hajari E, Watt MP, Mycock DJ, McAlister B (2006). Plant regeneration from induced callus of improved Eucalyptus clones. South African Journal of Botany 72:195-201.

Harris RE, Mason EBB (1983). Two machines for in vitro propagation of plants in liquid media. Canadian Journal of Plant Science 63(1):311-316.

IBÁ (2017). Indústria Brasileira de Árvores [Brazilian Tree Industry]. Retrieved 2017 October 28 from http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf.

Ivanova M, Van Staden J (2011). Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell, Tissue and Organ Culture 104: 13-21.

Jackson MB (2003). Aeration stress in plant tissue cultures. Bulgarian Journal of Plant Physiology XXVIX(3-4):96-105.

Kim SJ, Dewir YH, Moon HK (2011). Large-scale plantlets conversion from cotyledonary somatic embryos of Kalopanax septemlobus tree using bioreactor cultures. Journal of Plant Biochemistry and Biotechnology 20(2):241-248.

Lambardi M (2012). Micropropagazione in coltura liquida con sistema ad immersione temporanea [Micropropagation in liquid culture with temporary immersion system]. Rivista di Frutticoltura e di Ortofloricoltura 12:32-38.

Le Roux JJ, Van Staden J (1991). Micropropagation and tissue culture of Eucalyptus - A review. Tree Physiology 9:435-77.

McAlister B, Finnie J, Watt MP, Blakeway F (2005). Use of temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forest (SA). Plant Cell, Tissue and Organ Culture 81(3):347-358.

Mendonça EG, Stein VC, Carvalho HH de, Santos BR, Beijo LA, Paiva LV (2016). The use of continuous, temporary immersion bioreactor system and semisolid culture medium for the production of Eucalyptus camaldulensis clones. Ciência Florestal 26(4):1211-1224.

Oliveira ML de, Xavier A, Filho RMP, Reis JP dos (2014). Efeito do intervalo de imersão e de injeção de ar na multiplicação in vitro de Eucalyptus grandis × Eucalyptus urophylla em biorreator de imersão temporária [Effect of the immersion interval and air injection on in vitro multiplication of Eucalyptus grandis × Eucalyptus urophylla in temporary immersion bioreactor]. Ciência Florestal 24(1):37-45.

Oliveira ML de, Xavier A, Filho RMP, Otoni WC, Teixeira JB (2011a). Efeitos do meio de cultura e da relação BAP/ANA na multiplicação in vitro de clones de Eucalyptus grandis X E. urophylla em biorreator de imersão temporária [Effects of culture medium and BA / NAA ratio on in vitro multiplication of Eucalyptus grandis × E. urophylla clones in temporary immersion bioreactor]. Revista Árvore 35(6):1207-1217.

Oliveira ML de, Xavier A, Penchel RM, Santos AF (2011b). Multiplicação in vitro de Eucalyptus grandis x E. urophylla cultivado em meio semissólido e em biorreator de imersão temporária [In vitro multiplication of Eucalyptus grandis × E. urophylla grown in semisolid medium and in temporary immersion bioreactor] Scientia Forestalis 39(31):309-315.

Peña-Ramírez YJ, Juárez-Gómez J, Gómez-López L, Jerónimo-Pérez JL, Gárcia-Sheseña I, González-Rodrígues JA, Robert ML (2010). Multiple adventitious shoot formation in Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cellular & Developmental Biology – Plant 46:149-160.

Preil W (2005). General introduction: a personal reflection on the use of liquid media for in vitro culture. In: Preil W, Hvoslef-Eide AK (Eds). Liquid culture systems for in vitro plant propagation. Springer, Berlin pp 1-18.

Quiala E, Barbón R, Jiménez E, Feria M de, Chávez M, Capote A, Pérez N (2006). Biomass production of Cymbopogon citratus (DC) Stapf., a medicinal plant, in temporary immersion systems. In Vitro Cellular & Developmental Biology Plant 42(3):298-300.

Quiala E, Cañal M-J, Meijón M, Rodríguez R, Chávez M, Valledor L, ... Feria M de, Barbón R (2012). Morphological and physiological responses of proliferating shoots of teak to temporary immersion and BA treatments. Plant Cell, Tissue and Organ Culture 109:223-234.

Schönherr J (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany 57(11):2471-2491.

Shandil AS, Tuia VS (2015). Micropropagation of breadfruit (A. altilis) enhanced using a bioreactor system. Acta Horticulturae 1101:159-163.

Tilkat E, Süzerer V, Ersali A, Hoser A, Kilinç FM, Tilkat EA, ... Kaplan A (2014). Mass shoot proliferation of Pistacia khinjuk stocks using temporary immersion bioreactor system (TIS). Acta Horticulturae 1028:145-151.

Troch V, Sapeta H, Werbrouck S, Geelen D, Van Labeke M-C (2010). In vitro culture of chestnut (Castanea sativa Mill.) using temporary immersion bioreactors. Acta Horticulturae 885:383-389.

Vidal N, Correa B, Rial E, Regueira M, Sánchez C, Cuenca B (2015a). Comparison of temporary and continuous immersion systems for micropropagation of axillary shoots of chestnut and willow. Acta Horticulturae 1083:227-233.

Vidal N, Blanco B, Cuenca B (2015b). A temporary immersion system for micropropagation of axillary of hybrid chestnut. Plant Cell, Tissue and Organ Culture 123:229-243.

Vilchez J, Albany N (2015). Determinación de parámetros de cultivo en la germinación de embriones somáticos de Psidium guajava L. en sistemas de inmersión temporal de tipo RITA® [Determination of culture parameters in the germination of somatic embryos of Psidium guajava L. in temporary immersion systems RITA® type]. Revista de la Facultad de Agronomía LUZ 32:209-230.

Welander M, Persson J, Asp H, Zhu LH (2014). Evaluation of a new vessel system based on temporary immersion system for micropropagation. Scientia Horticulturae 179:227-232.

Whittemore R, Knafl K (2005). The integrative review: updated methodology. Journal of Advanced Nursing 52(5):546-553.

Zhu L-H, Li X-Y, Welander M (2005). Optimization of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell, Tissue and Organ Culture 81:313-318.




DOI: http://dx.doi.org/10.15835/nbha47111305

June 1, 2018: Notulae Botanicae Horti Agrobotanici Cluj-Napoca in Scopus – Elsevier CiteScore 2017=0.78, Horticulture; Agronomy and Crop Science; Plant Science


 
http://not-bot-horti-agrobo.blogspot.com/
https://www.facebook.com/NotBotHA
https://twitter.com/NotBotHA