Soils of Tropical Dry Forest and with Different Crops Presenting Ascospores of Monosporascus cannonballus

Authors

  • Rui SALES JÚNIOR Universidade Federal Rural do Semi-Árido, Centro de Ciências Agrárias e Florestais, 59.625-900 Mossoró, Rio Grande do Norte (BR) http://orcid.org/0000-0001-9097-0649
  • Rosemberg F. SENHOR Universidade Federal Rural de Pernambuco, Departamento de Agronomia, 52.171-000, Recife, Pernambuco (BR)
  • Erika V. MEDEIROS Universidade Federal Rural de Pernambuco, Departamento de Agronomia, 52.171-000, Recife, Pernambuco (BR) http://orcid.org/0000-0001-5543-9414
  • Andreia M.P. NEGREIROS Universidade Federal Rural do Semi-Árido, Centro de Ciências Agrárias e Florestais, 59.625-900 Mossoró, Rio Grande do Norte (BR) http://orcid.org/0000-0002-9544-2527
  • Roberto BELTRÁN Universitat Politècnica de València, Departamento de Ecosistemas Agroforestales, 46022 Valencia (ES)
  • Sami J. MICHEREFF Universidade Federal Rural de Pernambuco, Departamento de Agronomia, 52.171-000, Recife, Pernambuco (BR) http://orcid.org/0000-0002-2156-3502

DOI:

https://doi.org/10.15835/nbha47111269

Keywords:

ascospore extraction, prospecting of soils, root rot, soilborne pathogen, vine decline

Abstract

The vine decline caused by Monosporascus cannonballus is a limiting factor in different crops in several countries. The objective of this study was to quantify the M. cannonballus ascospores in soils covered with tropical dry forest and areas cultivated with pineapple, cotton, coconut, corn, mango, melon, papaya, sorghum and watermelon. Five areas were sampled in tropical dry forest and every crop. The M. cannonballus ascospores were extracted using the flotation method of sucrose. Ascospores of M. cannonballus were detected in all soil samples from Rio Grande do Norte and Ceará states, including tropical dry forest. There were significant differences among the ascospores densities of M. cannonballus, which varied from 0.55 to 2.21 ascospores g-1 soil. The lower densities were found in areas with cotton, coconut, mango, pineapple, and melon within the first and fifth years of cultivation, in addition to uncultivated areas of tropical dry forest. The highest ascospores density was found in papaya areas. Up to date, there is no study to prove that this crop is considered host of this phytopathogen. Cultivated areas with cucurbitaceous with more years of cultivation presented higher densities of M. cannonballus ascospores in soils from Brazilian semiarid. However, there is no direct relationship between M. cannonballus population density in the soil and the susceptibility of the host being cultivated in the soil at the time of sampling.

References

Aleandri MP, Martignoni D, Reda R, Alfaro-Fernández A, Font MI, Armengol J, Chilosi G (2017). Involvement of Olpidium bornovanus and O. virulentus in the occurrence of melon root rot and vine decline caused by Monosporascus cannonballus in Central Italy. Journal of Plant Pathology 99:169-176.

Alves AR, Ferreira RLC, Silva JAA, Dubeux Júnior JCB, Osajima JA, Holanda AC (2017). Conteúdo de nutrients na biomassa e eficiência nutricional em espécies da Caatinga [Content of nutrients in the biomass and nutritional efficiency in species of ‘Caatinga’ biome]. Ciência Florestal 27:377-390.

Al-Mawaali QS, Al-Sadi AM, Al-Said FA, Deadman ML (2013). Etiology, development and reaction of muskmelon to vine decline under arid conditions of Oman. Phytopathologia Mediterranea 52:457-465.

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711-728.

Andrade EM (2017). A floresta tropical seca, caatinga: As certezas e incertezas das águas [Caatinga, the tropical dry forest: the certainties and uncertainties of water]. Tordesillas Revista de Investigación Multidisciplinar 12:11-20.

Andrade GT, Michereff SJ, Biondi CM, Nascimento CWA, Sales Júnior R (2005). Frequência de fungos associados ao colapso do meloeiro e relação com características físicas, químicas e microbiológicas dos solos [Frequency of fungi associated with melon colapse and its relationship with physical, chemical and microbiological characteristics of soils]. Summa Phytopathologica 31:327-333.

ANUÁRIO (2017). Anuário Brasileiro da Fruticultura [Brazilian Fruit Yearbook]. Gazeta Press, Brasil.

Baird RE, Watson CE, Scruggs M (2003). Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Disease 87:563-566.

Beltrán R, Vincent A, García-Jiménez J, Armengol J (2008). Comparative epidemiology of Monosporascus root rot and vine decline in muskmelon, watermelon, and grafted watermelon crops. Plant Disease 92:158-163.

Beltrán R, Vincent A, Sales Júnior R, García-Jiménez J, Armengol J (2005). Population dynamics of Monosporascus cannonballus ascospores in marsh soils in eastern Spain. European Journal of Plant Pathology 113:357-365.

Cohen R, Pivonia S, Crosby KM, Martyn RD (2012). Advances in the biology and management of monosporascus vine decline and wilt of melons and other cucurbits. Horticultural Review 39:77-120.

Herrera-Vásquez JA, Córdoba-Sellés MC, Cebrián MC, Rosseló JA, Alfaro-Fernández A, Jordá C (2010). Genetic diversity of Melon necrotic spot virus and Olpidium isolates from different origins. Plant Pathology 59:240-251.

IBGE (2016). Instituto Brasileiro de Geografia e Estatística - Produção Agrícola Municipal [Brazilian Institute of Geography and Statistics – Municipal Agricultural Production]. Brasil. Retrieved 2018 April 05 from https://sidra.ibge.gov.br/tabela/1612.

Markakis EA, Trantas EA, Lagogianni CS, Mpalantinaki E, Pagoulatou M, Ververidis F, Goumas DE (2018). First report of root rot and vine decline of melon caused by Monosporascus cannonballus in Greece. Plant Disease 102:1036.

Martyn RD, Miller ME (1996). Monosporascus root rot and vine decline: an emerging disease of melons worldwide. Plant Disease 80:716-725.

Medeiros EV, Sales Júnior R, Michereff SJ, Barbosa MR (2006). Quantificação de ascósporos de Monosporascus cannonballus em solos não cultivados de Caatinga e em áreas de cultivo de melão do Rio Grande do Norte e Ceará [Quantification of Monosporascus cannonballus ascospores in non-cultivated soils of Caatinga and melon producing fields in Rio Grande do Norte and Ceará States]. Fitopatologia Brasileira 31:500-504.

Medeiros EV, Serafim ECS, Granjeiro LC, Sobrinho JE, Negreiros MZ, Sales Júnior R (2008a). Influência do agrotêxtil sobre a densidade populacional de Monosporascus cannonballus em solos cultivados com melancia (Citrullus lanatus) [Influence of the row cover on the population density of Monosporascus cannonballus in soil cultivated with watermelon (Citrullus lanatus)]. Ciência e Agrotecnologia 32:797-803.

Medeiros EV, Silva KJP, Oliveira L, Ferreira HA, Sales Júnior R (2008b). Monosporascus cannonballus density in soils cultivated with different crops in Rio Grande do Norte State, Brazil. Revista Brasileira de Ciências Agrárias 3:1-5.

Mertely JC, Martyn RD, Miller ME, Bruton BD (1993). Quantification of Monosporascus cannonballus ascospores in three commercial muskmelon fields in south Texas. Plant Disease 77:766-771.

Radewald KC, Ferrin DM, Stanghellini ME (2004). Sanitation practices that inhibit reproduction of Monosporascus cannonballus in melon roots left in the field after crop termination. Plant Pathology 53:660-668.

Reuveni R, Krikun J (1983). Occurrence of Monosporascus eutypoides under arid conditions in Israel. Transactions of the British Mycological Society 80:354-356.

Sales Júnior R, Balbino DAD, Negreiros AMP, Barboza HDS, de Medeiros EV, Armengol J (2018). Cotton, cowpea and sesame are alternative crops to cucurbits in soils naturally infested with Monosporascus cannonballus. Journal of Phytopathology 1:1–7.

Sales Júnior R, Beltrán R, Michereff SJ, Armengol J, García-Jiménez J, Medeiros, EV (2006). Análisis de distintos tipos de azúcares en el método de extracción de ascosporas de Monosporascus cannonballus en suelo [Analysis of different types of sugar in the extraction method of ascospores of Monosporascus cannonballus in soil]. Fitopatologia Brasileira 31:185-187.

Sales Júnior R, Beltrán R, Vicent A, Armengol J, García-Jiménez J, Medeiros EV (2007). Controle biológico de Monosporascus cannonballus com Chaetomium [Biological control of Monosporascus cannonballus by Chaetomium]. Fitopatologia Brasileira 32:70-74.

Sales Júnior R, Santana CVS, Nogueira DRS, Silva KJP, Guimarães IM, Michereff SJ, ... Armengol J (2010). First report of Monosporascus cannonballus on watermelon in Brazil. Plant Disease 94:278.

Sales Júnior R, Nascimento IJB, Freitas LS, Beltrán R, Armengol J, Vicent A, García-Jiménez J (2004). First report of Monosporascus cannonballus on melon in Brazil. Plant Disease 88:84.

Sales Júnior R, Oliveira OF, Medeiros EV, Guimarães IM, Correia KC, Michereff SJ (2012). Ervas daninhas como hospedeiras alternativas de patógenos causadores do colapso do meloeiro [Weeds as alternative hosts of melon colapse pathogens]. Revista Ciência Agronômica 43:195-198.

Senhor R, Souza PA, Andrade Neto RC, Pinto AC, Soares SRF (2009). Colapso do meloeiro associado a Monosporascus cannonballus [Collapse of melon plant Monosporascus cannonballus]. Revista Verde de Agroecologia e Desenvolvimento Sustentável 4:06-14.

Silva FAS, Azevedo CAV (2016). The Assistat Software Version 7.7 and its use in the analysis of experimental data. African Journal of Agricultural Research 11:3733-3740.

Stanghellini ME, Kim DH, Waugh MM (2000). Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology 90:243-247.

Stanghellini ME, Waugh MM, Radewald KC, Kim DH, Ferrin DM, Turini T (2004). Crop residues destruction strategies that enhance rather than inhibit reproduction of Monosporascus cannonballus. Plant Pathology 53:50-53.

Stanghellini ME, Mohammadi M, Adaskaveg JE (2014). Effect of soil matric water potentials on germination of ascospores of Monosporascus cannonballus and colonization of melon roots by zoospores of Olpidium bornovanus. European Journal of Plant Pathology 139:393-398.

Stanghellini ME, Kim DH, Rasmussen SL (1996). Ascospores of Monosporascus cannonballus: germination and distribution in cultivated and desert soils in Arizona. Phytopathology 86: 509-514.

Stanghellini ME, Misaghi IJ (2011). Olpidium bornovanus-mediated germination of ascospores of Monosporascus cannonballus: a host-specific rhizosphere interaction. Phytopathology 101:794-796.

Waugh MM, Kim DH, Ferrin DM, Stanghellini ME (2003). Reproductive potential of Monosporascus cannonballus. Plant Disease 87:45-50.

Yan LY, Zang QY, Huang YP, Wang YH (2016). First report of root rot and vine decline of melon caused by Monosporascus cannonballus in Eastern Mainland China. Plant Disease 100:651.

Downloads

Published

2018-08-08

How to Cite

SALES JÚNIOR, R., SENHOR, R. F., MEDEIROS, E. V., NEGREIROS, A. M., BELTRÁN, R., & MICHEREFF, S. J. (2018). Soils of Tropical Dry Forest and with Different Crops Presenting Ascospores of Monosporascus cannonballus. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 262–267. https://doi.org/10.15835/nbha47111269

Issue

Section

Note
CITATION
DOI: 10.15835/nbha47111269

Most read articles by the same author(s)